精英家教网 > 初中数学 > 题目详情

【题目】如图,已知ABC∽△ADEAB30cmBD18cmBC20cm,∠BAC75°,∠ABC40°

求:(1)∠ADE和∠AED的度数;

2DE的长.

【答案】(1)ADE=40°,AED =65°;(2)8cm

【解析】

(1)根据三角形的内角和得到∠ACB=180°﹣∠BAC﹣∠ABC=65°,根据相似三角形的对应角相等即可得到结论

(2)根据相似三角形的对应边的比相等即可得到结论

1)∵∠BAC=75°,∠ABC=40°,∴∠ACB=180°﹣∠BAC﹣∠ABC=65°.

∵△ABC∽△ADE,∴∠ADE=∠ABC=40°,∠AED=∠ACB=65°;

(2)∵△ABC∽△ADE,∴

AB=30cmBD=18cmBC=20cm,∴,∴DE=8(cm).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线AB和抛物线的交点是A(0,-3)B(59),已知抛物线的顶点D的横坐标是2.

(1)求抛物线的解析式及顶点坐标;

(2)轴上是否存在一点C,与AB组成等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;

(3)在直线AB的下方抛物线上找一点P,连接PAPB使得△PAB的面积最大,并求出这个最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据:

转动转盘的次数n

100

150

200

500

800

1000

落在铅笔的次数m

68

111

136

345

546

701

落在铅笔的频率

(结果保留小数点后两位)

0.68

0.74

0.68

0.69

0.68

0.70

1)转动该转盘一次,获得铅笔的概率约为_______;(结果保留小数点后一位)

2)铅笔每只0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,请计算该商场每天需要支出的奖品费用;

3)在(2)的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为______度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx轴,∠ABC=135°,且AB=4.

(1)填空:抛物线的顶点坐标为 (用含m的代数式表示);

(2)求ABC的面积(用含a的代数式表示);

(3)若ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某生利用标杆测量学校旗杆的高度,标杆CD等于3m,标杆与旗杆的水平距离BD15m,人的眼睛距地面的高度EF1.6m,人与标杆CD的水平距离DF2m.则旗杆AB的高度为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形ABCD,按照下列操作作图:①以A为圆心,AC长为半径画弧交AD的延长线于点E;②以E为圆心,EC长为半径画弧交DE的延长线于点F;③分别以CF为圆心,大于CF的长为半径画弧,两弧相交于点N;④作射线EN,根据作图,若∠ACB=72°,则∠FEN的度数为(  )

A. 54° B. 63° C. 72° D. 75°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线yax2+bx+ca≠0)图象的一部分如图所示,其对称轴为x2,与x轴的一个交点是(﹣10),有以下结论:①abc0;②4a2b+c0;③4a+b0④抛物线与x轴的另一个交点是(50)⑤若点(﹣3y1)(﹣6y2)都在抛物线上,则y1y2.其中正确的是_____.(只填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若抛物线yx23x+cy轴的交点为(02),则下列说法正确的是(  )

A. 抛物线开口向下

B. 抛物线与x轴的交点为(﹣10),(30

C. x1时,y有最大值为0

D. 抛物线的对称轴是直线x

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,PAPB是⊙O的切线,AB为切点,∠OAB30°.

1)求∠APB的度数;

2)当OA3时,求AP的长.

查看答案和解析>>

同步练习册答案