精英家教网 > 初中数学 > 题目详情

【题目】某商场有一个可以自由转动的圆形转盘(如图).规定:顾客购物100元以上可以获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品(指针指向两个扇形的交线时,当作指向右边的扇形).下表是活动进行中的一组统计数据:

转动转盘的次数n

100

150

200

500

800

1000

落在铅笔的次数m

68

111

136

345

546

701

落在铅笔的频率

(结果保留小数点后两位)

0.68

0.74

0.68

0.69

0.68

0.70

1)转动该转盘一次,获得铅笔的概率约为_______;(结果保留小数点后一位)

2)铅笔每只0.5元,饮料每瓶3元,经统计该商场每天约有4000名顾客参加抽奖活动,请计算该商场每天需要支出的奖品费用;

3)在(2)的条件下,该商场想把每天支出的奖品费用控制在3000元左右,则转盘上“一瓶饮料”区域的圆心角应调整为______度.

【答案】(1)0.7;(2)该商场每天大致需要支出的奖品费用为5000元;(3)36

【解析】

(1)利用频率估计概率求解;
(2)利用(1)得到获得铅笔的概率为0.7和获得饮料的概率为0.3,然后计算4000×0.5×0.7+4000×3×0.3即可;
(3)设转盘上“一瓶饮料”区域的圆心角应调整为n度,则4000×3×+4000×0.5(1-)=3000,然后解方程即可.

(1)转动该转盘一次,获得铅笔的概率约为0.7;

故答案为: 0.7

(2)4000×0.5×0.7+4000×3×0.3=5000,

所以该商场每天大致需要支出的奖品费用为5000元;

(3)设转盘上一瓶饮料区域的圆心角应调整为n度,

4000×3×+4000×0.5(1﹣)=3000,解得n=36,

所以转盘上一瓶饮料区域的圆心角应调整为36度.

故答案为36.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】正方形ABCD与正方形OEFG中,点D和点F的坐标分别为(﹣3,2)和(1,﹣1),则这两个正方形的位似中心的坐标为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小敏家对面新建了一幢图书大厦,小敏在自家窗口测得大厦顶部的仰角为45°,大厦底部的仰角为30°,如图所示,量得两幢楼之间的距离为20米.

1)求出大厦的高度BD

2)求出小敏家的高度AE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A04)、D30).

1)求经过点C的反比例函数的解析式;

2)设P是(1)中所求函数图象上一点,以POA顶点的三角形的面积与COB的面积相等.求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB和抛物线的交点是A(0,-3)B(59),已知抛物线的顶点D的横坐标是2.

(1)求抛物线的解析式及顶点坐标;

(2)轴上是否存在一点C,与AB组成等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;

(3)在直线AB的下方抛物线上找一点P,连接PAPB使得△PAB的面积最大,并求出这个最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】M是正方形ABCD的边AB上一动点(不与AB重合),BPMC,垂足为P,将∠CPB绕点P旋转,得到∠CPB’,当射线PC’经过点D时,射线PB’与BC交于点N

1)依题意补全图形;

2)求证:△BPN∽△CPD

3)在点M的运动过程中,图中是否存在与BM始终保持相等的线段?若存在,请写出这条线段并证明;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形 是菱形,B=6,且∠ABC=60° ,M是菱形内任一点,连接AMBMCM,则AM+BM+CM 的最小值为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC∽△ADEAB30cmBD18cmBC20cm,∠BAC75°,∠ABC40°

求:(1)∠ADE和∠AED的度数;

2DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且∠DBA=∠BCD

1)根据你的判断:BD是⊙O的切线吗?为什么?.

2)若点E是劣弧BC上一点,AEBC相交于点F,且BEF的面积为10cosBFA,那么,你能求出ACF的面积吗?若能,请你求出其面积;若不能,请说明理由.

查看答案和解析>>

同步练习册答案