精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,点D、E、F分别是边AB、AC、BC的中点,要判定四边形DBFE是菱形,下列所添加条件不正确的是(  )

A. AB=AC B. AB=BC C. BE平分∠ABC D. EF=CF

【答案】A

【解析】

AB=BC时,四边形DBFE是菱形.根据三角形中位线定理证明即可;当BE平分∠ABC时,可证BD=DE,可得四边形DBFE是菱形,当EF=FC,可证EF=BF,可得四边形DBFE是菱形,由此即可判断;

AB=BC时,四边形DBFE是菱形;

理由:∵点D、E、F分别是边AB、AC、BC的中点,

DEBC,EFAB,

∴四边形DBFE是平行四边形,

DE=BC,EF=AB,

DE=EF,

∴四边形DBFE是菱形.

B正确,不符合题意,

BE平分∠ABC时,可证BD=DE,可得四边形DBFE是菱形,

EF=FC,可证EF=BF,可得四边形DBFE是菱形,

C、D不符合题意,

故选A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知点M(n,-n)在第二象限,过点M的直线y=kxb(k1)分别交x轴、y轴于点AB,过点MMNx轴于点N,点P为线段AN上任意一点,则点P的横坐标可以是( )

A. (1)nB. (1)nC. (1k)nD. (1k)n

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=kx-3与x轴、y轴分别相交于B、C两点,且OC=2OB

(1)求B点的坐标和k的值.

(2)若点A(x,y)是直线y=kx-3上在第一象限内的一个动点,当A 在运动的过程中,试写出△AOB的面积S与x的函数关系式,(不要求写出自变量的取值范围).

(3)探究:在(2)的条件下

①当A运动到什么位置时,△ABO的面积为,并说明理由.

②在①成立的情况下,x轴上是否存在一点P,使△AOP是等腰三角形?若存在,请直接写出满足条件的所有P点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知四边形ABCD是矩形,连接AC,点E是边CB延长线上一点,CA=CE,连接AE,F是线段AE的中点,

(1)如图1,当AD=DC时,连接CFABM,求证:BM=BE;

(2)如图2,连接BDACO,连接DF分别交AB、ACG、H,连接GC,若∠FDB=30°,S四边形GBOH=,求线段GC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法:①倒数等于本身的数是±1;②互为相反数的两个非零数的商为﹣1;③如果两个数的绝对值相等,那么这两个数相等;④有理数可以分为正有理数和负有理数;⑤单项式﹣的系数是﹣,次数是6;⑥多项式a3+4a28是三次三项式,其中正确的个数是(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.

(1)若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;

(2)请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①已知抛物线y=ax2﹣3ax﹣4a(a<0)的图象与x轴交于A、B两点(AB的左侧),与y的正半轴交于点C,连结BC,二次函数的对称轴与x轴的交点为E.

(1)抛物线的对称轴与x轴的交点E坐标为_____,点A的坐标为_____

(2)若以E为圆心的圆与y轴和直线BC都相切,试求出抛物线的解析式;

(3)在(2)的条件下,如图②Q(m,0)是x的正半轴上一点,过点Qy轴的平行线,与直线BC交于点M,与抛物线交于点N,连结CN,将CMN沿CN翻折,M的对应点为M′.在图②中探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案