【题目】(1)先完成下列表格:
a | …… | 0.0001 | 0.01 | 1 | 100 | 10000 | …… |
…… | 0.01 | ______ | 1 | ______ | ______ | …… |
(2)由上表你发现什么规律?
(3)根据你发现的规律填空:
①已知=1.732则=______=______
②已知=0.056,则=______
【答案】(1)0.1,10,100;(2)被开方数的小数点向左或向右每移动两位开方后所得的结果相应的也向左或向右移动1位;(3)17.32,0.1732,560
【解析】
(1)直接利用已知数据开平方得出答案;
(2)利用原数据与开平方后的数据变化得出一般性规律是被开方数的小数点向左或向右每移动两位开方后所得的结果相应的也向左或向右移动1位;
(3)利用(2)中发现的规律进而分别得出各数据答案.
解:(1)
a | …… | 0.0001 | 0.01 | 1 | 100 | 10000 | …… |
…… | 0.01 | 0.1 | 1 | 10 | 100 | …… |
(2)规律是:被开方数的小数点向左或向右每移动两位开方后所得的结果相应的也向左或向右移动1位;
(3)①∵=1.732,∴=17.32;
=0.1732;
②∵=0.056,∴=560.
故答案为:①17.32;0.1732;②560.
科目:初中数学 来源: 题型:
【题目】某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为~的产品为合格〉.随机各抽取了20个祥品迸行检测.过程如下:
收集数据(单位:):
甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.
乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.
整理数据:
组别频数 | 165.5~170.5 | 170.5~175.5 | 175.5~180.5 | 180.5~185.5 | 185.5~190.5 | 190.5~195.5 |
甲车间 | 2 | 4 | 5 | 6 | 2 | 1 |
乙车间 | 1 | 2 | 2 | 0 |
分析数据:
车间 | 平均数 | 众数 | 中位数 | 方差 |
甲车间 | 180 | 185 | 180 | 43.1 |
乙车间 | 180 | 180 | 180 | 22.6 |
应用数据;
(1)计算甲车间样品的合格率.
(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?
(3)结合上述数据信息.请判断哪个车间生产的新产品更好.并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=AC,连接AE交OD于点F,连接CE、OE.
(1)求证:OE=CD;
(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料,求值:1+2+22+23+24+…+22015.解:设S=1+2+22+23+24+…+22015,将等式两边同时乘以2得:2S=2+22+23+24+…+22015+22016;将下式减去上式得2S﹣S=22016﹣1;即S=1+2+22+23+24+…+22015=22016﹣1;请你仿照此法计算:
(1)1+2+22+23+…+210
(2)1+3+32+33+34+…+3n(其中n为正整数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某同学统计了家中10月份的长途电话清单,并按通话时间画出了如图所示的统计图(每组数据含左端点值,不含右端点值).
(1)该同学家这个月一共打了多少次长途电话?
(2)通话时间不足10分钟的有多少次?
(3)哪个时间范围内的通话次数最多?哪个时间范围内的通话次数最少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球 B.乒乓球C.羽毛球 D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,
请回答下列问题:
(1)这次被调查的学生共有多少人?
(2)请你将条形统计图(2)补充完整;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】分解因式x2-4y2-2x+4y,细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式,过程为:x2-4y2-2x+4y=(x+2y)(x-2y)-2(x-2y)=(x-2y)(x+2y-2).这种分解因式的方法叫分组分解法,利用这种方法解决下列问题:
(1)分解因式:a2-4a-b2+4;
(2)若△ABC三边a、b、c满足a2-ab-ac+bc=0,试判断△ABC的形状.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料,解答后面的问题:
材料:求代数式x2-2x+5的最小值.
小明同学的解答过程:x2-2x+5=x2-2x+1-1+5=(x-1)2+4
我们把这种解决问题的方法叫做“配方法”.
(1)请按照小明的解题思路,写出完整的解答过程;
(2)请运用“配方法”解决问题:
①若x2+y2-6x+10y+34=0,求y-x的立方根;
②分解因式:4x4+1.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com