【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+与x轴交于A(﹣3,0),B(1,0)两点.与y轴交于点C,点D与点C关于抛物线的对称轴对称.
(1)求抛物线的解析式,并直接写出点D的坐标;
(2)如图1,点P从点A出发,以每秒1个单位长度的速度沿A→B匀速运动,到达点B时停止运动.以AP为边作等边△APQ(点Q在x轴上方),设点P在运动过程中,△APQ与四边形AOCD重叠部分的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式;
(3)如图2,连接AC,在第二象限内存在点M,使得以M、O、A为顶点的三角形与△AOC相似.请直接写出所有符合条件的点M坐标.
【答案】
(1)
解:∵抛物线y=ax2+bx+经过A(﹣3,0),B(1,0)两点,
∴,
解得,
∴抛物线解析式为y=﹣x2﹣x+;
则D点坐标为(﹣2,).
(2)
解:∵点D与A横坐标相差1,纵坐标之差为,则tan∠DAP=,
∴∠DAP=60°,
又∵△APQ为等边三角形,
∴点Q始终在直线AD上运动,当点Q与D重合时,由等边三角形的性质可知:
AP=AD==2.
①当0≤t≤2时,P在线段AO上,此时△APQ的面积即是△APQ与四边形AOCD的重叠面积.
AP=t,
∵∠QAP=60°,
∴点Q的纵坐标为tsin60°=t,
∴S=×t×t=t2.
②当2<t≤3时,如图:
此时点Q在AD的延长线上,点P在OA上,
设QP与DC交于点H,
∵DC∥AP,
∴∠QDH=∠QAP=∠QHD=∠QPA=60°,
∴△QDH是等边三角形,
∴S=S△QAP﹣S△QDH,
∵QA=t,
∴S△QAP=t2.
∵QD=t﹣2,
∴S△QDH=(t﹣2)2,
∴S=t2﹣(t﹣2)2=t﹣.
③当3<t≤4时,如图:
此时点Q在AD的延长线上,点P在线段OB上,
设QP与DC交于点E,与OC交于点F,过点Q作AP的垂涎,垂足为G,
∵OP=t﹣3,∠FPO=60°,
∴OF=OPtan60°=(t﹣3),
∴S△FOP=×(t﹣3)(t﹣3)=(t﹣3)2,
∵S=S△QAP﹣S△QDE﹣S△FOP,S△QAP﹣S△QDE=t﹣.
∴S=t﹣﹣(t﹣3)2=﹣t2+4t﹣.
综上所述,S与t之间的函数关系式为S=.
(3)
解:∵OC=,OA=3,OA⊥OC,则△OAC是含30°的直角三角形.
①当△AMO以∠AMO为直角的直角三角形时;如图:
过点M2作AO的垂线,垂足为N,
∵∠M2AO=30°,AO=3,
∴M2O=,
又∵∠OM2N=M2AO=30°,
∴ON=OM2=,M2N=ON=,
∴M2的坐标为(﹣,).
同理可得M1的坐标为(﹣,).
②当△AMO以∠OAM为直角的直角三角形时;如图:
∵以M、O、A为顶点的三角形与△OAC相似,
∴=,或=,
∵OA=3,
∴AM=或AM=3,
∵AM⊥OA,且点M在第二象限,
∴点M的坐标为(﹣3,)或(﹣3,3).
综上所述,符合条件的点M的所有可能的坐标为(﹣3,),(﹣3,3),(﹣,),(﹣,).
【解析】(1)直接代入求得函数解析式即可,由点D与C对称求得点D坐标即可;
(2)由特殊角的三角函数值得出∠DAP=60°,则点Q一直在直线AD上运动,分别探讨当点P在线段AO上;点Q在AD的延长线上,点P在线段OB上以及点Q在AD的延长线上,点P在线段OB上时的重叠面积,利用三角形的面积计算公式求得答案即可;
(3)由于OC=,OA=3,OA⊥OC,则△OAC是含30°的直角三角形,分两种情况探讨:当△AMO以∠AMO为直角的直角三角形时;当△AMO以∠OAM为直角的直角三角形时;得出答案即可.
科目:初中数学 来源: 题型:
【题目】如图,AD是△ABC的角平分线,以AD为弦的⊙O交AB、AC于E、F,已知EF∥BC.
(1)求证:BC是⊙O的切线;
(2)若已知AE=12,CF=6,求DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某社区为了解居民对足球、篮球、排球、羽毛球和乒乓球这五种球类运动项目的喜爱情况,在社区开展了“我最喜爱的球类运动项目”的随机调查(每位被调查者必须且只能选择最喜爱的一种球类运动项目),并将调查结果进行了统计,绘制成了如图所示的两幅不完整的统计图:
(1)求本次被调查的人数;
(2)将上面的两幅统计图补充完整;
(3)若该社区喜爱这五种球类运动项目的人数大约有4000人,请你估计该社区喜爱羽毛球运动项目的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】高速铁路列车已成为中国人出行的重要交通工具,其平均速度是普通铁路列车平均速度的3倍,同样行驶690km,高速铁路列车比普通铁路列车少运行了4.6h,求高速铁路列车的平均速度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两名同学某学期的四次数学测试成绩(单位:分)如下表:
第一次 | 第二次 | 第三次 | 第四次 | |
甲 | 87 | 95 | 85 | 93 |
乙 | 80 | 80 | 90 | 90 |
据上表计算,甲、乙两名同学四次数学测试成绩的方差分别为S甲2=17、S乙2=25,下列说法正确的是( )
A.甲同学四次数学测试成绩的平均数是89分
B.甲同学四次数学测试成绩的中位数是90分
C.乙同学四次数学测试成绩的众数是80分
D.乙同学四次数学测试成绩较稳定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC,∠C=90°,AC=BC=a,在△ABC中截出一个正方形A1B1C1D1 , 使点A1 , D1分别在AC,BC边上,边B1C1在AB边上;在△BC1D1在截出第二个正方形A2B2C2D2 , 使点A2 , D2分别在BC1 , D1C1边上,边B2C2在BD1边上;…,依此方法作下去,则第n个正方形的边长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,点F是BC延长线上一点,以CF为边,作菱形CDEF,使菱形CDEF与点A在BC的同侧,连接BE,点G是BE的中点,连接AG、DG.
(1)如图①,当∠BAC=∠DCF=90°时,直接写出AG与DG的位置和数量关系;
(2)如图②,当∠BAC=∠DCF=60°时,试探究AG与DG的位置和数量关系,
(3)当∠BAC=∠DCF=α时,直接写出AG与DG的数量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com