精英家教网 > 初中数学 > 题目详情

【题目】在△ABC中,AB=AC,点F是BC延长线上一点,以CF为边,作菱形CDEF,使菱形CDEF与点A在BC的同侧,连接BE,点G是BE的中点,连接AG、DG.

(1)如图①,当∠BAC=∠DCF=90°时,直接写出AG与DG的位置和数量关系;
(2)如图②,当∠BAC=∠DCF=60°时,试探究AG与DG的位置和数量关系,
(3)当∠BAC=∠DCF=α时,直接写出AG与DG的数量关系.

【答案】
(1)

解:AG⊥DG,AG=DG,

证明:延长DG与BC交于H,连接AH、AD,

∵四边形DCEF是正方形,

∴DE=DC,DE∥CF,

∴∠GBH=∠GED,∠GHB=∠GDE,

∵G是BC的中点,

∴BG=EG,

在△BGH和△EGD中

∴△BGH≌△EGD(AAS),

∴BH=ED,HG=DG,

∴BH=DC,

∵AB=AC,∠BAC=90°,

∴∠ABC=∠ACB=45°,

∵∠DCF=90°,

∴∠DCB=90°,

∴∠ACD=45°,

∴∠ABH=∠ACD=45°,

在△ABH和△ACD中

∴△ABH≌△ACD(SAS),

∴∠BAH=∠CAD,AH=AD,

∵∠BAH+∠HAC=90°,

∴∠CAD+∠HAC=90°,即∠HAD=90°,

∴AG⊥GD,AG=GD;


(2)

解:AG⊥GD,AG=DG;

证明:延长DG与BC交于H,连接AH、AD,

∵四边形DCEF是正方形,

∴DE=DC,DE∥CF,

∴∠GBH=∠GED,∠GHB=∠GDE,

∵G是BC的中点,

∴BG=EG,

在△BGH和△EGD中

∴△BGH≌△EGD(AAS),

∴BH=ED,HG=DG,

∴BH=DC,

∵AB=AC,∠BAC=∠DCF=60,

∴∠ABC=60°,∠ACD=60°,

∴∠ABC=∠ACD=60°,

在△ABH和△ACD中

∴△ABH≌△ACD(SAS),

∴∠BAH=∠CAD,AH=AD,

∴∠BAC=∠HAD=60°;

∴AG⊥HD,∠HAG=∠DAG=30°,

∴tan∠DAG=tan30°==

∴AG=DG.


(3)

解:DG=AGtan

证明:延长DG与BC交于H,连接AH、AD,

∵四边形DCEF是正方形,

∴DE=DC,DE∥CF,

∴∠GBH=∠GED,∠GHB=∠GDE,

∵G是BC的中点,

∴BG=EG,

在△BGH和△EGD中

∴△BGH≌△EGD(AAS),

∴BH=ED,HG=DG,

∴BH=DC,

∵AB=AC,∠BAC=∠DCF=α,

∴∠ABC=90°﹣,∠ACD=90°﹣

∴∠ABC=∠ACD,

在△ABH和△ACD中

∴△ABH≌△ACD(SAS),

∴∠BAH=∠CAD,AH=AD,

∴∠BAC=∠HAD=α;

∴AG⊥HD,∠HAG=∠DAG=

∴tan∠DAG=tan=

∴DG=AGtan


【解析】(1)延长DG与BC交于H,连接AH、AD,通过证得△BGH≌△EGD求得BH=ED,HG=DG,得出BH=DC,然后证得△ABH≌△ACD,得出∠BAH=∠CAD,AH=AD,进而求得∠HAD=90°,即可求得AG⊥GD,AG=GD;
(2)延长DG与BC交于H,连接AH、AD,通过证得△BGH≌△EGD求得BH=ED,HG=DG,得出BH=DC,然后证得△ABH≌△ACD,得出∠BAH=∠CAD,AH=AD,进而求得△HAD是等边三角形,即可证得AG⊥GD,AG=DG;
(3)延长DG与BC交于H,连接AH、AD,通过证得△BGH≌△EGD求得BH=ED,HG=DG,得出BH=DC,然后证得△ABH≌△ACD,得出∠BAH=∠CAD,AH=AD,进而求得△HAD是等腰三角形,即可证得DG=AGtan
【考点精析】通过灵活运用等腰三角形的性质和菱形的性质,掌握等腰三角形的两个底角相等(简称:等边对等角);菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+与x轴交于A(﹣3,0),B(1,0)两点.与y轴交于点C,点D与点C关于抛物线的对称轴对称.

(1)求抛物线的解析式,并直接写出点D的坐标;
(2)如图1,点P从点A出发,以每秒1个单位长度的速度沿A→B匀速运动,到达点B时停止运动.以AP为边作等边△APQ(点Q在x轴上方),设点P在运动过程中,△APQ与四边形AOCD重叠部分的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式;
(3)如图2,连接AC,在第二象限内存在点M,使得以M、O、A为顶点的三角形与△AOC相似.请直接写出所有符合条件的点M坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点E,F分别在边BC,CD上,如果AE=4,EF=3,AF=5,那么正方形ABCD的面积等于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,以AC为直径的⊙O与边AB交于点D,点E为⊙O上一点,连接CE并延长交AB于点F,连接ED.

(1)若∠B+∠FED=90°,求证:BC是⊙O的切线;
(2)若FC=6,DE=3,FD=2,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市计划经销一些特产,经销前,围绕“A:绥中白梨,B:虹螺岘干豆腐,C:绥中六股河鸭蛋,D:兴城红崖子花生”四种特产,在全市范围内随机抽取了部分市民进行问卷调查:“我最喜欢的特产是什么?”(必选且只选一种).现将调查结果整理后,绘制成如图所示的不完整的扇形统计图和条形统计图.

(1)请补全扇形统计图和条形统计图;
(2)若全市有280万市民,估计全市最喜欢“虹螺岘干豆腐”的市民约有多少万人?
(3)在一个不透明的口袋中有四个分别写上四种特产标记A、B、C、D的小球(除标记外完全相同),随机摸出一个小球然后放回,混合摇匀后,再随机摸出一个小球,则两次都摸到“A”的概率为_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣1,5),B(﹣4,1),C(﹣1,1)将△ABC绕点A逆时针旋转90°,得到△AB′C′,点B,C的对应点分别为点B′,C′,

(1)画出△AB′C′;
(2)写出点B′,C′的坐标;
(3)求出在△ABC旋转的过程中,点C经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过原点O的直线AB与反比例函数(k>0)的图象交于A、B两点,点B坐标为(﹣2,m),过点A作AC⊥y轴于点C,OA的垂直平分线DE交OC于点D,交AB于点E.若△ACD的周长为5,则k的值为.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下:

x

30

32

34

36

y

40

36

32

28


(1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);
(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?
(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线C:y2=4x的焦点为F,准线为l.⊙F与C交于A,B两点,与x轴的负半轴交于点P. (Ⅰ)若⊙F被l所截得的弦长为 ,求|AB|;
(Ⅱ)判断直线PA与C的交点个数,并说明理由.

查看答案和解析>>

同步练习册答案