精英家教网 > 初中数学 > 题目详情

【题目】已知抛物线C:y2=4x的焦点为F,准线为l.⊙F与C交于A,B两点,与x轴的负半轴交于点P. (Ⅰ)若⊙F被l所截得的弦长为 ,求|AB|;
(Ⅱ)判断直线PA与C的交点个数,并说明理由.

【答案】解:(Ⅰ)抛物线C:y2=4x的焦点为F(1,0), ∵⊙F被l所截得的弦长为
∴圆的半径为 =3,
∴⊙F的方程为(x﹣1)2+y2=9,
与y2=4x联立可得A(2,2 ),B(2,﹣2 ),∴|AB|=4
(Ⅱ)(x﹣1)2+y2=9,令y=0,可得P(4,0),
∵A(2,2 ),∴直线PA与C的交点个数为2.
【解析】(Ⅰ)若⊙F被l所截得的弦长为 ,求出圆的半径,得到圆的方程,即可求|AB|;(Ⅱ)求出P的坐标,即可判断直线PA与C的交点个数,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=AC,点F是BC延长线上一点,以CF为边,作菱形CDEF,使菱形CDEF与点A在BC的同侧,连接BE,点G是BE的中点,连接AG、DG.

(1)如图①,当∠BAC=∠DCF=90°时,直接写出AG与DG的位置和数量关系;
(2)如图②,当∠BAC=∠DCF=60°时,试探究AG与DG的位置和数量关系,
(3)当∠BAC=∠DCF=α时,直接写出AG与DG的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且Sn=2an﹣2 (Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn= ,求数列{bn}前n项和Tn

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣x,g(x)=ex﹣ax﹣1(e为自然对数的底数).
(1)讨论函数g(x)的单调性;
(2)当x>0时,f(x)≤g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数列{an}满足a1=1,(a1+a2)+(a2+a3)+(a3+a4)+…+(an+an+1)=2n+1﹣2,则a8=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙P内含于⊙O,⊙O的弦AB切⊙P于点C,且AB∥OP.若阴影部分的面积为16π,则弦AB的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.

(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;
(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC和△BAC相似的是(
A.∠DAC=∠ABC
B.AC是∠BCD的平分线
C.AC2=BC?CD
D. =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现有五张完全相同的卡片,某同学在其中四张的正面分别写上了春节、清明节、端午节、重阳节这四个中国传统节日,在第五张的正面写上了国庆节,然后把卡片背面朝上洗匀,从中随机抽取一张卡片,则所抽取卡片正面所写节日是中国传统节日的概率是(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案