精英家教网 > 初中数学 > 题目详情
1.已知⊙O1与⊙O2的半径分别是2和6,若⊙O1与⊙O2相交,那么圆心距O1O2的取值范围是(  )
A.2<O1O2<4B.2<O1O2<6C.4<O1O2<8D.4<O1O2<10

分析 本题直接告诉了两圆的半径及两圆相交,求圆心距范围内的可能取值,根据数量关系与两圆位置关系的对应情况便可直接得出答案.相交,则R-r<P<R+r.(P表示圆心距,R,r分别表示两圆的半径).

解答 解:两圆半径差为4,半径和为8,
两圆相交时,圆心距大于两圆半径差,且小于两圆半径和,
所以,4<O1O2<8.
故选C.

点评 本题考查了由数量关系及两圆位置关系确定圆心距范围内的数的方法,属于基础题,比较简单.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.点P(-1,4)绕原点顺时针旋转180°得到点P',点P'的坐标为(1,-4).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知m是有理数,代数式5x2-mx-2与3x2+mx+m的和是单项式,求代数式m2+2m+1的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.利用三角函数的定义我们可以证明某些结论,已知△ABC中,AB=c,BC=a,CA=b,则有c2=a2+b2-2abcosC,你能证明这个结论吗?(利用如图,作AD⊥BC)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.平面直角坐标系内的一条直线同时满足下列两个条件:①不经过第四象限;②与两条坐标轴所围成的三角形的面积为2,这条直线的解析式可以是y=x+2(写出一个解析式即可).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.(尺规作图)已知线段a,b(a<b),求作线段AB,使AB=a+b(只需画图,不要求写画法)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,C是以AB为直径的⊙O上一点,过O作OE⊥AC于点E,过点A作⊙O的切线交OE的延长线于点F,连接CF并延长交BA的延长线于点P.
(1)求证:PC是⊙O的切线.
(2)若AF=1,OA=2$\sqrt{2}$,求PC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.化简:
(1)$\frac{4}{{x}^{2}-4}$+$\frac{2}{x+2}$-$\frac{1}{x-2}$;
(2)$\frac{x-4}{4{x}^{2}-9}$÷$\frac{1}{2x+3}$+$\frac{x+1}{2x-3}$;
(3)1-$\frac{a-1}{a}$÷($\frac{a}{a+2}$-$\frac{1}{{a}^{2}+2a}$).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,点A是直线l外一点,在l上取两点B、C,分别以A、C为圆心,BC、AB长为半径画弧,两弧交于点D,则四点A、B、C、D可能组成的图形是(  )
A.平行四边形B.梯形
C.平行四边形或梯形D.平行四边形或矩形

查看答案和解析>>

同步练习册答案