精英家教网 > 初中数学 > 题目详情

【题目】因长期干旱,甲水库蓄水量降到了正常水位的最低值.为灌溉需要,由乙水库向甲水库匀速供水,20h后,甲水库打开一个排灌闸为农田匀速灌溉,又经过20h,甲水库打开另一个排灌闸同时灌溉,再经过40h,乙水库停止供水.甲水库每个排泄闸的灌溉速度相同,图中的折线表示甲水库蓄水量Q(万m3) 与时间t(h) 之间的函数关系.求:
(1)线段BC的函数表达式;
(2)乙水库供水速度和甲水库一个排灌闸的灌溉速度;
(3)乙水库停止供水后,经过多长时间甲水库蓄水量又降到了正常水位的最低值?

【答案】
(1)解:由图象知:线段BC经过点(20,500)和(40,600),

∴设解析式为:Q=kt+b,

解得:

∴解析式为:Q=5t+400(20≤t≤40)


(2)解:设乙水库的供水速度为x万m3/h,甲水库一个闸门的灌溉速度为y万m3/h,

解得

∴乙水库供水速度为15万m3/h和甲水库一个排灌闸的灌溉速度10万m3/h


(3)解:∵正常水位的最低值为a=500﹣15×20=200,

∴(400﹣200)÷(2×10)=10h,

∴10小时后降到了正常水位的最低值.


【解析】(1)将B、C两点的坐标代入到一次函数的解析式,利用待定系数法求得函数解析式即可;(2)利用前20小时可以求得甲水库的灌溉速度,用第80小时后可以求得乙水库的灌溉速度;(3)得到乙水库的蓄水量和灌溉时间之间的函数关系式求最小值即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,对角线AC、BD相交于点O,过点O作一条直线分别交DA、BC的延长线于点E、F,连接BE、DF.
(1)求证:四边形BFDE是平行四边形;
(2)若EF⊥AB,垂足为M,tan∠MBO= ,求EM:MF的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系xOy中,点A、B分别在函数y1= (x>0)与y2=﹣ (x<0)的图象上,A、B的横坐标分别为
a、b.

(1)若AB∥x轴,求△OAB的面积;
(2)若△OAB是以AB为底边的等腰三角形,且a+b≠0,求ab的值;
(3)作边长为3的正方形ACDE,使AC∥x轴,点D在点A的左上方,那么,对大于或等于4的任意实数a,CD边与函数y1= (x>0)的图象都有交点,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知l1⊥l2 , ⊙O与l1 , l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1 , l2重合,AB=4 cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)
(1)如图①,连接OA、AC,则∠OAC的度数为°;
(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1 , A1 , C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);
(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一枚棋子放在边长为1个单位长度的正六边形ABCDEF的顶点A处,通过摸球来确定该棋子的走法,其规则是:在一只不透明的袋子中,装有3个标号分别为1、2、3的相同小球,搅匀后从中任意摸出1个,记下标号后放回袋中并搅匀,再从中任意摸出1个,摸出的两个小球标号之和是几棋子就沿边按顺时针方向走几个单位长度. 棋子走到哪一点的可能性最大?求出棋子走到该点的概率.(用列表或画树状图的方法求解)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若α、β为方程2x2﹣5x﹣1=0的两个实数根,则2α2+3αβ+5β的值为(
A.﹣13
B.12
C.14
D.15

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,C为⊙O上一点,AD与过点C的切线互相垂直,垂足为点D,AD交⊙O于点E,连接CE,CB.
(1)求证:CE=CB;
(2)若AC=2 ,CE= ,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=mx2﹣16mx+48m(m>0)与x轴交于A,B两点(点B在点A左侧),与y轴交于点C,点D是抛物线上的一个动点,且位于第四象限,连接OD、BD、AC、AD,延长AD交y轴于点E.

(1)若△OAC为等腰直角三角形,求m的值;
(2)若对任意m>0,C、E两点总关于原点对称,求点D的坐标(用含m的式子表示);
(3)当点D运动到某一位置时,恰好使得∠ODB=∠OAD,且点D为线段AE的中点,此时对于该抛物线上任意一点P(x0 , y0)总有n+ ≥﹣4 my02﹣12 y0﹣50成立,求实数n的最小值.

查看答案和解析>>

同步练习册答案