精英家教网 > 初中数学 > 题目详情

【题目】如图,在菱形ABCD中,对角线AC、BD相交于点O,过点O作一条直线分别交DA、BC的延长线于点E、F,连接BE、DF.
(1)求证:四边形BFDE是平行四边形;
(2)若EF⊥AB,垂足为M,tan∠MBO= ,求EM:MF的值.

【答案】
(1)证明:在菱形ABCD中,AD∥BC,OA=OC,OB=OD,

∴∠AEO=∠CFO,

在△AEO和△CFO中,

∴△AEO≌△CFO(AAS),

∴OE=OF,

又∵OB=OD,

∴四边形BFDE是平行四边形;


(2)解:设OM=x,

∵EF⊥AB,tan∠MBO=

∴BM=2x,

又∵AC⊥BD,

∴∠AOM=∠OBM,

∴△AOM∽△OBM,

=

∴AM= = x,

∵AD∥BC,

∴△AEM∽△BFM,

∴EM:FM=AM:BM= x:2x=1:4.


【解析】(1)根据两直线平行,内错角相等可得∠AEO=∠CFO,然后利用“角角边”证明△AEO和△CFO全等,根据全等三角形对应边相等可得OE=OF,再根据对角线互相平分的四边形是平行四边形证明即可;(2)设OM=x,根据∠MBO的正切值表示出BM,再根据△AOM和△OBM相似,利用相似三角形对应边成比例求出AM,然后根据△AEM和△BFM相似,利用相似三角形对应边成比例求解即可.
【考点精析】利用平行四边形的判定和菱形的性质对题目进行判断即可得到答案,需要熟知两组对边分别平行的四边形是平行四边形:两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作ABCD关于直线AD的对称图形AB1C1D
(1)若m=3,试求四边形CC1B1B面积S的最大值;
(2)若点B1恰好落在y轴上,试求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC.
(1)求证:∠1=∠2;
(2)连结BE、DE,判断四边形BCDE的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于E、F两点,连结DE,已知∠B=30°,⊙O的半径为12,弧DE的长度为4π.
(1)求证:DE∥BC;
(2)若AF=CE,求线段BC的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】
(1)计算: +|﹣1|﹣( ﹣1)0
(2)解方程: =

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在正方形ABCD中,点P沿边DA从点D开始向点A以1cm/s的速度移动;同时,点Q沿边AB、BC从点A开始向点C以2cm/s的速度移动.当点P移动到点A时,P、Q同时停止移动.设点P出发xs时,△PAQ的面积为ycm2 , y与x的函数图象如图②,则线段EF所在的直线对应的函数关系式为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学习小组由3名男生和1名女生组成,在一次合作学习后,开始进行成果展示.
(1)如果随机抽取1名同学单独展示,那么女生展示的概率为
(2)如果随机抽取2名同学共同展示,求同为男生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标系中,一直线a向下平移3个单位后所得直线b经过点A(0,3),将直线b绕点A顺时针旋转60°后所得直线经过点B(﹣ ,0),则直线a的函数关系式为(
A.y=﹣ x
B.y=﹣ x
C.y=﹣ x+6
D.y=﹣ x+6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】因长期干旱,甲水库蓄水量降到了正常水位的最低值.为灌溉需要,由乙水库向甲水库匀速供水,20h后,甲水库打开一个排灌闸为农田匀速灌溉,又经过20h,甲水库打开另一个排灌闸同时灌溉,再经过40h,乙水库停止供水.甲水库每个排泄闸的灌溉速度相同,图中的折线表示甲水库蓄水量Q(万m3) 与时间t(h) 之间的函数关系.求:
(1)线段BC的函数表达式;
(2)乙水库供水速度和甲水库一个排灌闸的灌溉速度;
(3)乙水库停止供水后,经过多长时间甲水库蓄水量又降到了正常水位的最低值?

查看答案和解析>>

同步练习册答案