【题目】如图,在△ABC中,∠ABC和∠ACB的平分线相交于点G,过点G作EF∥BC交AB于E,交AC于F,过点G作GD⊥AC于D,下列三个结论:① EF=BE+CF;②∠BGC=90°+∠A;③点G到△ABC各边的距离相等;其中正确的结论有_________(填序号)
【答案】①②③
【解析】
①根据∠ABC和∠ACB的平分线相交于点G可得出∠EBG=∠CBG,∠BCG=∠FCG,再由EF∥BC可知∠CBG=∠EGB,∠BCG=∠CGF,故可得出BE=EG,GF=CF,由此可得出结论;
②先根据角平分线的性质得出∠GBC+∠GCB=(∠ABC+∠ACB),再由三角形内角和定理即可得出结论;
由角平分线的性质得出点G到△ABC各边的距离相等,故③正确;
①∵∠ABC和∠ACB的平分线相交于点G,
∴∠EBG=∠CBG,∠BCG=∠FCG.
∵EF∥BC,
∴∠CBG=∠EGB,∠BCG=∠CGF,
∴∠EBG=∠EGB,∠FCG=∠CGF,
∴BE=EG,GF=CF,
∴EF=EG+GF=BE+CF,故本小题正确;
②∵∠ABC和∠ACB的平分线相交于点G,
∴∠GBC+∠GCB=(∠ABC+∠ACB)=(180°-∠A),
∴∠BGC=180°-(∠GBC+∠GCB)=180°-(180°-∠A)=90°+∠A,故本小题正确;
∵在△ABC中,∠ABC和∠ACB的平分线相交于点G,
∴点G到△ABC各边的距离相等,故③正确
故答案为:①②③.
科目:初中数学 来源: 题型:
【题目】11月5日晚在西昌卫星发射中心成功以“一箭双星”方式发射第24颗、第25颗北斗导航卫星,“中国的北斗,世界的北斗”,北斗卫星系统是由中国自主研发的全球领先的卫星导航系统,这套天罗地网在不久的将来会造福人类、服务全球.第三期北斗系统总项目预算国拨总投资为240亿元,分技术、基建、设备三个项目投资,基建项目投资占技术项目投资的,设备项目投资比技术项目投资少40%,由于物价的上涨,总项目的实际总投资随之增长,基建项目投资的增长率是技术项目投资增长率的2.5倍,设备项目投资的增长率达到基建项目投资增长率的2倍.
(1)三个项目的预算投资分别是多少亿元?
(2)由于技术工人齐心协力,整套导航系统提前半年交付使用,导航系统每月可供1000万台导航设备使用,每台导航设备的平均月使用费为40元,这样,可将提前半年使用的收益的70%用于该项目的实际投资,减少了国拨投资,使预算国拨总投资减少的百分率与技术项目投资的增长率相同,问第三期北斗系统工程的实际总投资是多少亿元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.
(1)求证:四边形AMDN是平行四边形.
(2)当AM的值为何值时,四边形AMDN是矩形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A的坐标为(2,0),以线段OA为边在第四象限内作等边三角形△AOB,点C为x正半轴上一动点(OC>2),连接BC,以线段BC为边在第四象限内作等边三角形△CBD连接DA并延长交y轴于点E.
(1)在点C的运动过程中,△OBC和△ABD全等吗?请说明理由;
(2)在点C的运动过程中,∠CAD的度数是否会变化?如果不变,请求出∠CAD的度数;如果变化请说明理由;
(3)探究当点C运动到什么位置时,以A,E,C为顶点的三角形是等腰三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面直角坐标系xOy中,点A、B的横坐标分别为a、,二次函数的图象经过点A、B,且a、m满足为常数.
若一次函数的图象经过A、B两点.
当、时,求k的值;
若y随x的增大而减小,求d的取值范围;
当且、时,判断直线AB与x轴的位置关系,并说明理由;
点A、B的位置随着a的变化而变化,设点A、B运动的路线与y轴分别相交于点C、D,线段CD的长度会发生变化吗?如果不变,求出CD的长;如果变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校园文学社为了解本校学生对本社一种报纸四个版面的喜欢情况,随机抽查部分学生做了一次问卷调查,要求学生选出自己最喜欢的一个版面,将调查数据进行了整理、绘制成部分统计图如下:
请根据图中信息,解答下列问题:
该调查的样本容量为______,______,“第一版”对应扇形的圆心角为______;
请你补全条形统计图;
若该校有1000名学生,请你估计全校学生中最喜欢“第三版”的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点D,E,F分别在AB,BC,AC边上,且BE=CF,BD=CE.
(1)求证:△DEF是等腰三角形;
(2)当∠A=50°时,求∠DEF的度数;
(3)若∠A=∠DEF,判断△DEF是否为等腰直角三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,种植花卉的利润y2与投资量x的平方成正比例关系,并得到了表格中的数据.
投资量x(万元) | 2 |
种植树木利润y1(万元) | 4 |
种植花卉利润y2(万元) | 2 |
(1)分别求出利润y1与y2关于投资量x的函数关系式;
(2)如果这位专业户以8万元资金投入种植花卉和树木,设他投入种植花卉金额m万元,种植花卉和树木共获利利润W万元,直接写出W关于m的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少?
(3)若该专业户想获利不低于22万,在(2)的条件下,直接写出投资种植花卉的金额m的范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,,,点B在x轴上,且.
求点B的坐标;
求的面积;
在y轴上是否存在P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com