分析 连结OA,如图,由OA=OC得到∠OCA=∠CAO=22.5°,则利用三角形外角性质可得∠AOD=45°,接着根据垂径定理得到AE=BE,且可判断△OAE为等腰直角三角形,然后根据等腰直角三角形的性质可得AE=$\frac{\sqrt{2}}{2}$OA=$\frac{3\sqrt{2}}{2}$,所以AB=2AE=3$\sqrt{2}$cm.
解答 解:连结OA,如图,![]()
∵OA=OC,
∴∠OCA=∠CAO=22.5°,
∴∠AOD=45°,
∵CD⊥AB,
∴AE=BE,△OAE为等腰直角三角形,
而CD=6,
∴OA=3,
∴AE=$\frac{\sqrt{2}}{2}$OA=$\frac{3\sqrt{2}}{2}$,
∴AB=2AE=3$\sqrt{2}$(cm).
故答案为3$\sqrt{2}$.
点评 本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了等腰三角形的性质.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 3a2bc与3ab2c是同类项 | B. | $\frac{{{m^2}+1}}{5}$是单项式 | ||
| C. | 单项式-x3y2的系数是-1 | D. | 3x2-y+5xy2是二次三项式 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com