分析 延长AD到点E,使AD=ED,连接CE,可证明△ABD≌△ECD,可求得CE=AB,在△ACE中可利用三角形三边关系可求得AE的取值范围,则可求得AB的取值范围.
解答 解:
延长AD到点E,使AD=ED,连接CE,
∵AD是△ABC的中线,
∴BD=CD,
在△ABD和△ECD中
$\left\{\begin{array}{l}{AD=ED}\\{∠ADB=∠EDC}\\{BD=CD}\end{array}\right.$
∴△ABD≌△ECD(SAS),
∴AB=EC,
在△AEC中,AC+AE>CE,且AE-AC<CE,
∵AC=6,AE=2AD=14,
∴8<AB<20,
故答案为:8<AB<20.
点评 本题主要考查全等三角形的判定和性质,构造全等三角形的,把AB、AC和AD转化到一个三角形中是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | 极差是 7 | B. | 众数是 8 | C. | 中位数是 8.5 | D. | 平均数是 9 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{{{x^2}-1}}{x-1}=\frac{{{{(x-1)}^2}}}{x-1}=\frac{1}{x-1}$ | B. | $\frac{{{x^2}-1}}{x-1}=\frac{{{{(x-1)}^2}}}{x-1}=x-1$ | ||
C. | $\frac{{{x^2}-1}}{x-1}=\frac{(x+1)(x-1)}{x-1}=x+1$ | D. | $\frac{{{x^2}-1}}{x-1}=\frac{(x+1)(x-1)}{x-1}=\frac{1}{x+1}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com