【题目】小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热[此过程中水温y(℃)与开机时间x(分)满足一次函数关系],当加热到100℃时自动停止加热,随后水温开始下降[此过程中水温y(℃)与开机时间x(分)成反比例关系],当水温降至20℃时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题:
(1)当0≤x≤8时,求水温y(℃)与开机时间x(分)的函数关系式;
(2)求图中t的值;
(3)若小明在通电开机后即外出散步,请你预测小明散步45分钟回到家时,饮水机内的温度约为多少℃?
【答案】(1)y=10x+20;(2)t=40;(3)小明散步45分钟回到家时,饮水机内的温度约为70℃.
【解析】(1)由函数图象可设函数解析式,再由图中坐标代入解析式,即可求得y与x的关系式;
(2)首先求出反比例函数解析式进而得到t的值;
(3)利用已知由x=5代入求出饮水机的温度即可.
(1)当0≤x≤8时,设水温y(℃)与开机时间x(分)的函数关系为:y=kx+b,
依据题意,得,解得:
,
故此函数解析式为:y=10x+20;
(2)在水温下降过程中,设水温y(℃)与开机时间x(分)的函数关系式为:y=,
依据题意,得:100=,即m=800,故y=
,
当y=20时,20=,解得:t=40;
(3)∵45﹣40=5≤8,
∴当x=5时,y=10×5+20=70,
答:小明散步45分钟回到家时,饮水机内的温度约为70℃.
“点睛”本题主要考查了一次函数及反比例函数的应用题,根据题意得出正确的函数解析式是解题关键,同学们在解答时要读懂题意,才不易出错.
科目:初中数学 来源: 题型:
【题目】如图1,△ABC中,AB=14,BC=15,AC=13
(1) sinB=_________,△ABC的面积为_________
(2) 如图2,点P由B点出发,以1个单位/s的速度向C点运动,过P作PE∥AB、PD∥AC分别交AC、AB边于E、D点,设运动时间为t秒
① 是否存在唯一的t值,使四边形PEAD的面积为S?若存在,求S值;若不存在,说明理由
② 如图3,将△PDE沿DE折叠至△QDE位置,连BQ、CQ,当t为何值时,2BQ=CQ
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知函数y=和函数y=
x+1的图象交于A,B两点,点A的坐标为(2,2),以下结论:①反比例函数的图象一定过点(-1,-4);②当x>2时,
x+1>
;③点B的坐标是(-4,-1);④S△OCD=1,其中正确结论的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】方程3x-4=1+2x,移项,得3x-2x=1+4,也可以理解为方程两边同时( )
A. 加上(-2x+4)B. 减去(-2x+4)C. 加上(2x+4)D. 减去(2x+4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在由边长为1的小正方形组成的网格图中有△ABC,建立平面直角坐标系后,点O的坐标是(0,0).
(1)以O为位似中心,作△A′B′C′∽△ABC,相似比为1:2,且保证△A′B′C′在第三象限;
(2)点B′的坐标为(_______),______);
(3)若线段BC上有一点D,它的坐标为(a,b),
那么它的对应点D′的坐标为(__________).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com