精英家教网 > 初中数学 > 题目详情
已知二次函数y=(k2-1)x2-(3k-1)x+2.
(1)二次函数的顶点在x轴上,求k的值;
(2)若二次函数与x轴的两个交点A、B均为整数点(坐标为整数的点),当k为整数时,求A、B两点的坐标.
分析:(1)根据二次函数的定义及△=0列出不等式组,求出k的值即可;
(2)令(k2-1)x2-(3k-1)x+2=0,设二次函数与x轴的两个交点A、B为x1,x2,由于A、B均为整数点,则x1,x2为整数,
根据一元二次方程根与系数的关系即可求出k的整数值,代入原方程即可求出A、B两点的坐标.
解答:解:(1)∵二次函数y=(k2-1)x2-(3k-1)x+2的顶点在x轴上,
∴此函数的图象与x轴有一个交点,
k2-1≠0
△=(3k-1)2-8(k2-1)=0
,解得k=3;
(2)令(k2-1)x2-(3k-1)x+2=0,设二次函数与x轴的两个交点A、B为x1,x2
∵A、B均为整数点,
∴x1,x2为整数,
∴x1•x2为整数,
∵x1•x2=
2
k2-1

∵k为整数,
∴k=0,
把k=0代入方程(k2-1)x2-(3k-1)x+2=0得,x2-x-2=0,
解得,x1=-1,x2=2.
∴A、B两点的坐标分别为(-1,0)、(2,0).
故答案为:k=0,A(-1,0)、B(2,0).
点评:本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知二次函数y=-x2+bx+c的图象过点A(1,2),B(3,2),C(0,-1),D(2,3).点P(x1,y1),Q(x2,y2)也在该函数的图象上,当0<x1<1,2<x2<3时,y1与y2的大小关系正确的是(  )
A、y1≥y2B、y1>y2C、y1<y2D、y1≤y2

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数的图象经过点(0,3),顶点坐标为(1,4),
(1)求这个二次函数的解析式;
(2)求图象与x轴交点A、B两点的坐标;
(3)图象与y轴交点为点C,求三角形ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•莒南县二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).
其中正确的结论有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①ac>0;②a-b+c<0;
③当x<0时,y<0;④方程ax2+bx+c=0(a≠0)有两个大于-1的实数根;⑤2a+b=0.其中,正确的说法有
②④⑤
②④⑤
.(请写出所有正确说法的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,已知A点坐标为(-1,0),且对称轴为直线x=2,则B点坐标为
(5,0)
(5,0)

查看答案和解析>>

同步练习册答案