精英家教网 > 初中数学 > 题目详情
14.如图所示,△ABC和△CDE是等边三角形,E是AC延长线上一点,M是AD的中点,N是BE的中点.试说明:△CMN是等边三角形.

分析 根据△ACD≌△BCE,得出AD=BE,AM=BN;又△AMC≌△BNC,可得CM=CN,∠ACM=∠BCN,证明∠NCM=∠ACB=60°即可证明△CMN是等边三角形.

解答 证明:∵△ABC是等边三角形,△CDE是等边三角形,M是线段AD的中点,N是线段BE的中点,
∴∠ACB=∠ECD=60°,
∴∠ACB+∠BCD=∠ECD+∠BCD,即∠ACD=∠BCE,
在△ACD和△BCE中,
$\left\{\begin{array}{l}{AC=BC}\\{∠ACD=∠BCE}\\{CD=CE}\end{array}\right.$,
∴△ACD≌△BCE,
∴AD=BE,AM=BN;
∴AC=BC,∠CAD=∠CBE,
在△AMC和△BNC中
$\left\{\begin{array}{l}{AM=BN}\\{∠MAC=∠NBC}\\{AC=BC}\end{array}\right.$
∴△AMC≌△BNC(SAS),
∴CM=CN,∠ACM=∠BCN;
又∵∠NCM=∠BCN-∠BCM,
∠ACB=∠ACM-∠BCM,
∴∠NCM=∠ACB=60°,
∴△CMN是等边三角形.

点评 本题考查了等边三角形的判定与性质及全等三角形的判定与性质,难度一般,熟练掌握等边三角形的性质是解答的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.如图,一只猫头鹰蹲在树AC上的B处,通过墙顶F发现一只老鼠在E处,刚想起飞捕捉时,老鼠突然跑到矮墙DF的阴影下,猫头鹰立即从B处向上飞至树上C处时,恰巧可以通过墙顶F看到老鼠躲在M处(A、D、M、E四点在同一条直线上).
已知,猫头鹰从B点观测E点的俯角为37°,从C点观察M点的俯角为53°,且DF=3米,AB=6米.求猫头鹰从B处飞高了多少米时,又发现了这只老鼠?(结果精确到0.01米)(参考数据:sin37°=cos53°=0.602,cos37°=sin53°=0.799,tan37°=cot53°=0.754,cot37°=tan53°=1.327).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.李爷爷家有一块三角形的花圃,他准备将其分成面积相等的四个部分,分别种上四种不同的花,请你帮李爷爷设计方案.

(1)如图1是王明设计的方案,取其中一边的四等分点,将三角形分成四个面积相等的三角形,请你在图2中设计一种与王明不同的方案;
(2)如图3是李昊同学设计的方案,取三边的中点,然后依次连接,将原图形分成四个三角形,请你说出这种方案的合理性.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在△ABC中,AB=AC,∠BAC=90°,D是BC的中点,AE=CF.求证:△DEF是等腰直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,已知等边三角形ABC,D为AC上一点,CD=CE,∠ACE=60°,延长BD交AE于F,连接CF.
(1)求证:△BCD≌△ACE;
(2)若AF=CF,试猜想线段BF、AF之间的数量关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知抛物线y=$\frac{1}{2}$x2+x+c与x轴交于A,B的两点,与y轴交于点C,顶点为P,其中点A的坐标是(1,0).
(1)分别求出抛物线的对称轴和点B、C、P的坐标;
(2)画出这条抛物线;
(3)利用图象求一元二次方程$\frac{1}{2}$x2+x+c=6的解.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,抛物线y=x2-2x-3与坐标轴交于A、B、C三点,过y轴上一点M作BC的平行线交抛物线于C、H(G左H右).若点M在y轴上运动,试判断HM-GM的值是否发生变化?若不变化,求出其值;若变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.(1)计算:(2x2y)(-xy2z)3(3x2
(2)因式分解:-8ax2+16axy-8ay2
(3)因式分解:(x2-3)2-4x2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.分式$\frac{3}{{{a^2}-{b^2}}},\frac{4}{a+b},\frac{1}{a-b}$的最简公分母是(a+b)(a-b).

查看答案和解析>>

同步练习册答案