精英家教网 > 初中数学 > 题目详情

如图,图中有一个正方形,此正方形的面积是


  1. A.
    16
  2. B.
    8
  3. C.
    4
  4. D.
    2
B
分析:设出正方形的边长,由勾股定理求得直角三角形的另一直角边,即正方形边长,进而求出正方形的面积.
解答:设正方形边长为x,则x2+x2=16,于是x2=8,故正方形面积为8.故选B.
点评:考查了正方形面积的计算,以及勾股定理的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在平面直角坐标系中,放置一个如图所示的直角三角形纸片AOB,已知OA=2,∠AOB=30度.D、E两点同时从原点O出发,D点以每秒
3
个单位长度的速度沿x轴正方向运动,E点以每秒1个单位精英家教网长度的速度沿y轴正方向运动,设D、E两点的运动时间为t秒.
(1)点A的坐标为
 
,点B的坐标为
 

(2)在点D、E的运动过程中,直线DE与直线OA垂直吗?请说明理由;
(3)当时间t在什么范围时,直线DE与线段OA有公共点?
(4)将直角三角形纸片AOB在直线DE下方的部分沿DE向上折叠,设折叠后重叠部分面积为S,请写出S与t的函数关系式,并求出S的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平面直角坐标系中的方格阵表示一个纵横交错的街道模型的一部分,以O为原点,建立如图所示的平面直角坐标系,x轴,y轴的正方向分别表示正东、正北方向,出租车只能沿街道(网格线)行驶,且从一个路口(格点)到另一个路口,必须选择最短路线,称最短路线的长度为两个街区之间的“出租车距离”.设图中每个小正方形方格的边长为1个单位.可以发现:
从原点O到(2,-1)的“出租车距离”为3,最短路线有3条;
从原点O到(2,2)的“出租车距离”为4,最短路线有6条.
(1)①从原点O到(6,1)的“出租车距离”为
7
7
.最短路线有
7
7
条;
②与原点O的“出租车距离”等于30的路口共有
120
120
个.
(2)①解释应用:从原点O到坐标(n,2)(n为大于2的整数)的路口A,有多少条最短路线?(请给出适当的说理或过程)
②解决问题:
从坐标为(1,-2)的路口到坐标为(3,36)的路口,最短路线有
780
780
条.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,有一条直线l:与x轴、y轴分别交于点M、N,一个高为3的等边三角形ABC,边BC在x轴上,将此三角形沿着x轴的正方向平移.

(1)在平移过程中,得到△A1B1C1,此时顶点A1恰落在直线l上,写出A1点的坐标      

(2)继续向右平移,得到△A2B2C2,此时它的外心P恰好落在直线l上,求P点的坐标;

(3)在直线l上是否存在这样的点,与(2)中的A2、B2、C2任意两点能同时构成三个等腰三角形?如果存在,求出点的坐标;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江西省抚州市临川区罗湖中学九年级(上)第三次月考数学试卷(解析版) 题型:填空题

如图,把双曲线(虚线部分)沿x轴的正方向、向右平移2个单位,得一个新的双曲线C2(实线部分),对于新的双曲线C2,下列结论:
①双曲线C2是中心对称图形,其对称中心是(2,0).
②双曲线C2仍是轴对称图形,它有两条对称轴.
③双曲线C2与y轴有交点,与x轴也有交点.
④当x<2时,双曲线C2中的一支,y的值随着x值的增大而减小.
其中正确结论的序号是    .(多填或错填得0分,少填则酌情给分.)

查看答案和解析>>

科目:初中数学 来源:2011年江西省中考数学模拟试卷(B)(解析版) 题型:填空题

如图,把双曲线(虚线部分)沿x轴的正方向、向右平移2个单位,得一个新的双曲线C2(实线部分),对于新的双曲线C2,下列结论:
①双曲线C2是中心对称图形,其对称中心是(2,0).
②双曲线C2仍是轴对称图形,它有两条对称轴.
③双曲线C2与y轴有交点,与x轴也有交点.
④当x<2时,双曲线C2中的一支,y的值随着x值的增大而减小.
其中正确结论的序号是    .(多填或错填得0分,少填则酌情给分.)

查看答案和解析>>

同步练习册答案