【题目】矩形OABC在直角坐标系中的位置如图所示,A、C两点的坐标分别为A(10,0)、C(0,3),直线与BC相交于点D,抛物线y=ax2+bx经过A、D两点.
(1)求抛物线的解析式;
(2)连接AD,试判断△OAD的形状,并说明理由.
(3)若点P是抛物线的对称轴上的一个动点,对称轴与OD、x轴分别交于点M、N,问:是否存在点P,使得以点P、O、M为顶点的三角形与△OAD相似?若存在,请求出点P的坐标;若不存在,请说明理由.
【答案】(1)y=-x2+x.;(2)△OAD是直角三角形.(3)(5,0)或(5,-15)
【解析】
试题(1)根据题意可得出点D的纵坐标为3,代入直线解析式可得出点D的横坐标,从而将点D和点A的坐标代入可得出抛物线的解析式.
(2)分别求出OA、OD、AD的长度,继而根据勾股定理的逆定理可判断出△OAD是直角三角形.
(3)①由图形可得当点P和点N重合时能满足△OPM∽△ODA,②过点O作OD的垂线交对称轴于点P′,此时也可满足△P′OM∽△ODA,利用相似的性质分别得出点P的坐标即可.
试题解析:(1)由题意得,点D的纵坐标为3,
∵点D在直线上,
∴点D的坐标为(9,3),
将点D(9,3)、点A(10,0)代入抛物线可得:
,
解得:
故抛物线的解析式为:y=-x2+x.
(2)∵点D坐标为(9,3),点A坐标为(10,0),
∴OA=10,OD=,AD=,
从而可得OA2=OD2+AD2,
故可判断△OAD是直角三角形.
(3)①由图形可得当点P和点N重合时能满足△OPM∽△ODA,
此时∠POM=∠DOA,∠OPM=∠ODA,
故可得△OPM∽△ODA,OP=OA=5,
即可得此时点P的坐标为(5,0)
②过点O作OD的垂线交对称轴于点P′,此时也可满足△P′OM∽△ODA,
由题意可得,点M的横坐标为5,代入直线方程可得点M的纵坐标为,
故可求得OM=
∵∠OP′M+∠OMN=∠DOA+∠OMN=90°,
∴∠OP′M=∠DOA,
∴△P′OM∽△ODA,
故可得,
即
解得:MP′=,
又∵点M的纵坐标=,
∴P′N==15,
即可得此时点P′的坐标为(5,-15)
综上可得存在这样的点P,点P的坐标为(5,0)或(5,-15)
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴交于点,点,与y轴交于点C,且过点.点P、Q是抛物线上的动点.
(1)求抛物线的解析式;
(2)当点P在直线OD下方时,求面积的最大值.
(3)直线OQ与线段BC相交于点E,当与相似时,求点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中华文明,源远流长,中华汉字,寓意深广.为传承中华优秀传统文化,某中学德育处组织了一次全校2000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,学校德育处随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:
成绩x(分)分数段 | 频数(人) | 频率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | 0.2 |
80≤x<90 | m | 0.35 |
90≤x<100 | 50 | n |
频数分布直方图
根据所给的信息,回答下列问题:
(1)m=________;n=________;
(2)补全频数分布直方图;
(3)这200名学生成绩的中位数会落在________分数段;
(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的2000名学生中成绩是“优”等的约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,BC=10cm、DC=6cm,点E、F分别为边AB、BC上的两个动点,E从点A出发以每秒5cm的速度向B运动,F从点B出发以每秒3cm的速度向C运动,设运动时间为t秒.若∠AFD=∠AED,则t的值_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=(x>0)的图象经过A,B两点.若点A的坐标为(n,1),则 k的值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线y=﹣(x﹣m)2+4(m>0)的顶点为A,与直线x=相交于点B,点A关于直线x=的对称点为C.
(1)若抛物线y=﹣(x﹣m)2+4(m>0)经过原点,求m的值.
(2)点C的坐标为 .用含m的代数式表示点B到直线AC的距离为 .
(3)将y=﹣(x﹣m)2+4(m>0,且x≥)的函数图象记为图象G,图象G关于直线x=的对称图象记为图象H.图象G与图象H组合成的图象记为图象M.
①当图象M与x轴恰好有三个交点时,求m的值.
②当△ABC为等腰直角三角形时,直接写出图象M所对应的函数值小于0时,自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向终点B以1cm/s的速度移动,点Q从点B开始沿BC边向终点C以2cm/s的速度移动,当其中一点到达终点时,另一点随之停止.点P,Q分别从点A,B同时出发.
(1)求出发多少秒时PQ的长度等于5cm;
(2)出发 秒时,△BPQ中有一个角与∠A相等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B.
(1)求抛物线的解析式;
(2)判断△ABC的形状,并说明理由;
(3)经过点A的直线交抛物线于点P,交x轴于点Q,若S△OPA=2S△OQA,试求出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线M1:y=﹣x2+4x交x正半轴于点A,将抛物线M1先向右平移3个单位,再向上平移3个单位得到抛物线M2,M1与M2交于点B,直线OB交M2于点C.
(1)求抛物线M2的解析式;
(2)点P是抛物线M1上AB间的一点,作PQ⊥x轴交抛物线M2于点Q,连接CP,CQ.设点P的横坐标为m,当m为何值时,使△CPQ的面积最大,并求出最大值;
(3)如图2,将直线OB向下平移,交抛物线M1于点E,F,交抛物线M2于点G,H,则的值是否为定值,证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com