精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠C=45°,AB的垂直平分线交AB于点E,交BC于点D;AC的垂直平分线交AC于点G,交BC与点F,连接AD、AF,若AC=3 ,BC=9,则DF等于(

A.
B.
C.4
D.3

【答案】A
【解析】解:∵AB的垂直平分线交AB于点E,交BC于点D;AC的垂直平分线交AC于点G,交BC与点F,AC=3
∴BD=AD,AF=CF,
∵∠C=45°
∴∠C=∠CAF=45°,
∴∠AFC=∠AFD=90°,
在Rt△AFC中,AF=CF=3 ×sin30°=3,
∵BC=9,
∴BF=9﹣3=6,
设DF=x,则BD=AD=6﹣x,
在Rt△ADF中,由勾股定理得:(6﹣x)2=x2+32
解得:x=
即DF=
故选A.
【考点精析】解答此题的关键在于理解线段垂直平分线的性质的相关知识,掌握垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等,以及对勾股定理的概念的理解,了解直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2﹣2x﹣3,点P在该函数的图象上,点P到x轴、y轴的距离分别为d1、d2 . 设d=d1+d2 , 下列结论中:
①d没有最大值;
②d没有最小值;
③﹣1<x<3时,d随x的增大而增大;
④满足d=5的点P有四个.
其中正确结论的个数有(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2
(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x= ,且经过点(2,0),有下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是抛物线上的两点,则y1=y2 . 上述说法正确的是(

A.①②④
B.③④
C.①③④
D.①②

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知双曲线y= ,经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A、B,连接AB,BC.

(1)求k的值;
(2)若△BCD的面积为12,求直线CD的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司销售A,B两种产品,根据市场调研,确定两条信息:
信息1:销售A种产品所获利润y:(万元)与销售产品x(吨)之间存在二次函数关系,如图所示:
信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y2=0.3x.
根据以上信息,解答下列问题;

(1)求二次函数解析式;
(2)该公司准备购进A、B两种产品共10吨,求销售A、B两种产品获得的利润之和最大是多少万元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解答题
(1)如图1,在△ABC中,AD是中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.

(2)如图2,在△ABC中,AB=2,AC=1,以AB为直径的圆与AC相切,与边BC交于点D,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是⊙A上的一点,且∠EPF=45°,则图中阴影部分的面积为(

A.4﹣π
B.4﹣2π
C.8+π
D.8﹣2π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=x2+bx+4经过点(2,-2).
(1)求出这个抛物线的解析式;
(2)求这个抛物线的顶点坐标.

查看答案和解析>>

同步练习册答案