精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是⊙A上的一点,且∠EPF=45°,则图中阴影部分的面积为(

A.4﹣π
B.4﹣2π
C.8+π
D.8﹣2π

【答案】A
【解析】解:

△ABC的面积是: BCAD= ×4×2=4,
∠A=2∠EPF=90°.
则扇形EAF的面积是: =π.
故阴影部分的面积=△ABC的面积﹣扇形EAF的面积=4﹣π.
故选A.
【考点精析】掌握切线的性质定理和扇形面积计算公式是解答本题的根本,需要知道切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径;在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,E、F为对角线AC上两点,且AE=CF,请你从图中找出一对全等三角形,并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=45°,AB的垂直平分线交AB于点E,交BC于点D;AC的垂直平分线交AC于点G,交BC与点F,连接AD、AF,若AC=3 ,BC=9,则DF等于(

A.
B.
C.4
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D,其图象与x轴的交点A(﹣1,0)、B(3,0),与y轴负半轴交于点C.

(1)若△ABD为等腰直角三角形,求此时抛物线的解析式;
(2)a为何值时△ABC为等腰三角形?
(3)在(1)的条件下,抛物线与直线y= x﹣4交于M、N两点(点M在点N的左侧),动点P从M点出发,先到达抛物线的对称轴上的某点E,再到达x轴上的某点F,最后运动到点N,若使点P运动的总路径最短,求点P运动的总路径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AB=2,∠ABC=60°,对角线AC、BD相交于点O,将对角线AC所在的直线绕点O顺时针旋转角α(0°<α<90°)后得直线l,直线l与AD、BC两边分别相交于点E和点F.

(1)求证:△AOE≌△COF;
(2)当α=30°时,求线段EF的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(﹣2,0),B(﹣1,﹣3).

(1)求抛物线的解析式;
(2)点M为y轴上任意一点,当点M到A,B两点的距离之和为最小时,求此时点M的坐标;
(3)在第(2)问的结论下,抛物线上的点P使SPAD=4SABM成立,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校举行全体学生“汉字听写”比赛,每位学生听写汉字39个.随机抽取了部分学生的听写结果,绘制成如下的图表.

组别

正常字数x

人数

A

0≤x<8

10

B

8≤x<16

15

C

16≤x<24

25

D

24≤x<32

m

E

32≤x<40

n

根据以上信息完成下列问题:
(1)统计表中的m= , n= , 并补全条形统计图;
(2)扇形统计图中“C组”所对应的圆心角的度数是
(3)已知该校共有900名学生,如果听写正确的字的个数少于24个定为不合格,请你估计该校本次听写比赛不合格的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某记者在某区随机选取了几个停车场对开车司机进行了相关的调查,本次调查结果有四种情形:
A.喝酒后开车 B.喝酒后不开车或请代驾 C.开车当天不喝酒 D.从不喝酒
将这次调查情况整理并绘制了如下尚不完整的两个统计图.请根据相关信息,解答下列问题:
(1)该记者本次一共调查了名司机;
(2)图1中情况D所在扇形的圆心角为°;

(3)补全图2;

(4)本次调查中,记者随机采访其中的一名司机,则他属于情况C的概率是
(5)若该区有3万名司机,则其中不违反“酒驾”禁令的人数约为人.

查看答案和解析>>

同步练习册答案