精英家教网 > 初中数学 > 题目详情

【题目】如图,在平行四边形ABCD中,E、F为对角线AC上两点,且AE=CF,请你从图中找出一对全等三角形,并给予证明.

【答案】解:△AED≌△CFB;
∵四边形ABCD是平行四边形,
∴DA=BC,DA∥BC,CD=AB,
∴∠DAC=∠BCA,
在△AED和△CFB中
∴△AED≌△CFB(SAS).
∴DE=BF,
∵AE=CF,
∴AE+EF=CF+EF,
∴AF=CE,
在△DEC和△BFA中
∴△DEC≌△BFA(SSS),
在△ADC和△CBA中
∴△ADC≌△CBA(SSS).
【解析】根据平行四边形的性质可得DA=BC,DA∥BC,根据平行线的性质可得∠DAC=∠BCA,进而可判定△AED≌△CFB.然后可得DE=BF,再证明△DEC≌△BFA,再利用SSS证明△ADC≌△CBA即可.
【考点精析】本题主要考查了平行四边形的性质的相关知识点,需要掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图①,已知矩形ABCD中,AB=60cm,BC=90cm.点P从点A出发,以3cm/s的速度沿AB运动:同时,点Q从点B出发,以20cm/s的速度沿BC运动.当点Q到达点C时,P、Q两点同时停止运动.设点P、Q运动的时间为t(s).

(1)当t=s时,△BPQ为等腰三角形;
(2)当BD平分PQ时,求t的值;
(3)如图②,将△BPQ沿PQ折叠,点B的对应点为E,PE、QE分别与AD交于点F、G.探索:是否存在实数t,使得AF=EF?如果存在,求出t的值:如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2﹣2x﹣3,点P在该函数的图象上,点P到x轴、y轴的距离分别为d1、d2 . 设d=d1+d2 , 下列结论中:
①d没有最大值;
②d没有最小值;
③﹣1<x<3时,d随x的增大而增大;
④满足d=5的点P有四个.
其中正确结论的个数有(
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2+bx+c经过A(﹣1,0)、B(3,0)两点.

(1)求抛物线的解析式和顶点坐标;
(2)当0<x<3时,求y的取值范围;
(3)点P为抛物线上一点,若SPAB=10,求出此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下列各题
(1)计算: +cos60°×( 2
(2)计算: +

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C,O是坐标原点,点A的坐标是(﹣1,0),点C的坐标是(0,﹣3).

(1)求抛物线的函数表达式;
(2)求直线BC的函数表达式和∠ABC的度数;
(3)在线段BC上是否存在一点P,使△ABP∽△CBA?若存在,求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2
(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x= ,且经过点(2,0),有下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是抛物线上的两点,则y1=y2 . 上述说法正确的是(

A.①②④
B.③④
C.①③④
D.①②

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,点P是⊙A上的一点,且∠EPF=45°,则图中阴影部分的面积为(

A.4﹣π
B.4﹣2π
C.8+π
D.8﹣2π

查看答案和解析>>

同步练习册答案