精英家教网 > 初中数学 > 题目详情

【题目】作图题:如图,在平面直角坐标系中,

1)画出边上的高CH

2)将平移到(点和点对应,点和点对应,点和点对应),若点的坐标为,请画出平移后的

3)若为平面内一点,且满足全等,请直接写出点的坐标.

【答案】1)见详解;(2)见详解;(3(34)(3-4)(14)(1-4)

【解析】

(1)根据三角形高的定义画出图形即可;
(2)先算出每个点平移后对应点的坐标,利用平移的性质画出图形即可;

(3)根据三角形全等的定义和判断,由DM=CH=2,即可找到N点的坐标使得全等;

解:(1)过点CCPAB,交BA的延长线于点P,则CP就是△ABCAB边上的高;


2)点A-41)平移到点D10),平移前后横坐标加5,纵坐标减1
因此:点BC平移前后坐标也作相应变化,
即:点B-11)平移到点E40),
C-53)平移到点F02),
平移后的△DEF如上图所示;

(3)为平面内一点,且满足全等时,此时DM的长度为2,刚好与CH的长度相等,又BH的长度等于4,根据三角形全等的性质(对应边相等),

如下图,可以找到4点N,

N点的坐标为:(34)(3-4)(14)(1-4)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,点EF分别在ABCD上,AFCE,垂足为点O,∠1=∠B

A+290°.求证:ABCD

证明:如图,

∵∠1=∠B(已知)

CEBF(同位角相等,两直线平行)

______________

∴∠AFC+290°(等式性质)

∵∠A+290°(已知)

∴∠AFC=∠A(同角或等角的余角相等)

ABCD(内错角相等,两直线平行)

请你仔细观察下列序号所代表的内容:

①∴∠AOE90°(垂直的定义)

②∴∠AFB90°(等量代换)

③∵AFCE(已知)

④∵∠AFC+AFB+2180°(平角的定义)

⑤∴∠AOE=∠AFB(两直线平行,同位角相等)

横线处应填写的过程,顺序正确的是(  )

A.⑤③①②④B.③④①②⑤C.⑤④③①②D.⑤②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.

(1)判断直线PC与⊙O的位置关系,并说明理由;
(2)若AB=9,BC=6.求PC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系内,正方形ABCD中的顶点B,D的坐标分别是(0,0),(2,0),且A,C两点关于x轴对称,则C点对应的坐标是( )

A.(1,1)
B.(1,﹣1)
C.(1,﹣2)
D.(2,﹣2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且GDF=ADF

1求证:ADE≌△BFE;

2连接EG,判断EG与DF的位置关系并说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为10厘米,点E在边AB上,且AE=4厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.设运动时间为t秒.

(1)若点Q的运动速度与点P的运动速度相等,经过2秒后,BPECQP是否全等?请说明理由;

(2)若点Q的运动速度与点P的运动速度不相等,则当t为何值时,能够使BPECQP全等;此时点Q的运动速度为多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,∠BAC90°,点DBC上一点,将ABD沿AD翻折后得到AED,边AE交射线BC于点F.(友情提醒:翻折前后的两个三角形的对应边相等,对应角相等.)

 

1)如图①,当AEBC时,求证:DEAC

2)若,∠BAD

①如图②,当DEBC时,求x的值;

②是否存在这样的x的值,使得DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将△ABC绕点C顺时针旋转m°得到△EDC,若点ADE在同一直线上,∠ACB=n°,则∠ADC的度数是(  )

A. mn)°B. 90+nm)°C. 90n+m)°D. 1802nm)°

查看答案和解析>>

同步练习册答案