【题目】作图题:如图,在平面直角坐标系中,,,
(1)画出的边上的高CH;
(2)将平移到(点和点对应,点和点对应,点和点对应),若点的坐标为,请画出平移后的;
(3)若,为平面内一点,且满足与全等,请直接写出点的坐标.
【答案】(1)见详解;(2)见详解;(3)(3,4)或(3,-4)或(1,4)或(1,-4).
【解析】
(1)根据三角形高的定义画出图形即可;
(2)先算出每个点平移后对应点的坐标,利用平移的性质画出图形即可;
(3)根据三角形全等的定义和判断,由DM=CH=2,即可找到N点的坐标使得与全等;
解:(1)过点C作CP⊥AB,交BA的延长线于点P,则CP就是△ABC的AB边上的高;
(2)点A(-4,1)平移到点D(1,0),平移前后横坐标加5,纵坐标减1,
因此:点B、C平移前后坐标也作相应变化,
即:点B(-1,1)平移到点E(4,0),
点C(-5,3)平移到点F(0,2),
平移后的△DEF如上图所示;
(3) 当,为平面内一点,且满足与全等时,此时DM的长度为2,刚好与CH的长度相等,又BH的长度等于4,根据三角形全等的性质(对应边相等),
如下图,可以找到4点N,
故N点的坐标为:(3,4)或(3,-4)或(1,4)或(1,-4).
科目:初中数学 来源: 题型:
【题目】如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,点E,F分别在AB,CD上,AF⊥CE,垂足为点O,∠1=∠B,
∠A+∠2=90°.求证:AB∥CD.
证明:如图,
∵∠1=∠B(已知)
∴CE∥BF(同位角相等,两直线平行)
______________
∴∠AFC+∠2=90°(等式性质)
∵∠A+∠2=90°(已知)
∴∠AFC=∠A(同角或等角的余角相等)
∴AB∥CD(内错角相等,两直线平行)
请你仔细观察下列序号所代表的内容:
①∴∠AOE=90°(垂直的定义)
②∴∠AFB=90°(等量代换)
③∵AF⊥CE(已知)
④∵∠AFC+∠AFB+∠2=180°(平角的定义)
⑤∴∠AOE=∠AFB(两直线平行,同位角相等)
横线处应填写的过程,顺序正确的是( )
A.⑤③①②④B.③④①②⑤C.⑤④③①②D.⑤②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.
(1)判断直线PC与⊙O的位置关系,并说明理由;
(2)若AB=9,BC=6.求PC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系内,正方形ABCD中的顶点B,D的坐标分别是(0,0),(2,0),且A,C两点关于x轴对称,则C点对应的坐标是( )
A.(1,1)
B.(1,﹣1)
C.(1,﹣2)
D.(2,﹣2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.
(1)求证:△ADE≌△BFE;
(2)连接EG,判断EG与DF的位置关系并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长为10厘米,点E在边AB上,且AE=4厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.设运动时间为t秒.
(1)若点Q的运动速度与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?请说明理由;
(2)若点Q的运动速度与点P的运动速度不相等,则当t为何值时,能够使△BPE与△CQP全等;此时点Q的运动速度为多少.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交射线BC于点F.(友情提醒:翻折前后的两个三角形的对应边相等,对应角相等.)
(1)如图①,当AE⊥BC时,求证:DE∥AC.
(2)若,∠BAD=x° .
①如图②,当DE⊥BC时,求x的值;
②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将△ABC绕点C顺时针旋转m°得到△EDC,若点A、D、E在同一直线上,∠ACB=n°,则∠ADC的度数是( )
A. (m﹣n)°B. (90+n-m)°C. (90-n+m)°D. (180﹣2n﹣m)°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com