精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数y=2x与反比例函数y=(k>0)的图象交于A,B两点,点P在以C(﹣2,0)为圆心,1为半径的⊙C上,QAP的中点,已知OQ长的最大值为,则k的值为(  )

A. B. C. D.

【答案】C

【解析】

如图,连接BP,由反比例函数的对称性质以及三角形中位线定理可得OQ=BP,再根据OQ的最大值从而可确定出BP长的最大值,由题意可知当BP过圆心C时,BP最长,过BBDx轴于D,继而根据正比例函数的性质以及勾股定理可求得点B坐标,再根据点B在反比例函数y=(k>0)的图象上,利用待定系数法即可求出k的值.

如图,连接BP,

由对称性得:OA=OB,

QAP的中点,

OQ=BP,

OQ长的最大值为

BP长的最大值为×2=3,

如图,当BP过圆心C时,BP最长,过BBDx轴于D,

CP=1,

BC=2,

B在直线y=2x上,

B(t,2t),则CD=t﹣(﹣2)=t+2,BD=﹣2t,

RtBCD中,由勾股定理得: BC2=CD2+BD2

22=(t+2)2+(﹣2t)2

t=0(舍)或t=﹣

B(﹣,﹣),

∵点B在反比例函数y=(k>0)的图象上,

k=﹣×(-)=

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某工厂将地处A,B两地的两个小工厂合成一个大厂,为了方便A,B两地职工的联系,企业准备在相距2kmA,B两地之间修一条笔直的公路(即图中的线段AB),经测量在A地的北偏东60°方向,B地的北偏西45°方向的C处有一以C点为中心,半径为0.7km的圆形公园,则修筑的这条公路会不会穿过公园?为什么?(提示:判断以点C为圆心的圆与AB的关系)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD∠BAD=∠C=90,AB=AD,AE⊥BCE,旋转后能与重合.

(1)旋转中心是哪一点?

(2)旋转了多少度?

(3)若AE=5㎝,求四边形AECF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,以点4为圆心,AB长为半径画弧交AD于点F;再分别以点B、F为圆心,大于BF的长为半径画弧,两弧交于点P;连接AP并廷长交BC于点E,连接EF

(1)根据以上尺规作图的过程,求证:四边形ABEF是菱形;

(2)AB=2,AE=2,求∠BAD的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场进行促销,购物满额即可获得1次抽奖机会,抽奖袋中装有红色、黄色、白色三种除颜色外都相同的小球,从袋子中摸出1个球,红色、黄色、白色分别代表一、二、三等奖.

1)若小明获得1次抽奖机会,小明中奖是   事件;(填随机、必然、不可能)

2)小明观察一段时间后发现,平均每8个人中会有1人抽中一等奖,2人抽中二等奖,若袋中共有24个球,请你估算袋中白球的数量;

3)在(2)的条件下,如果在抽奖袋中减少3个白球,那么抽奖一次恰好抽中一等奖的概率是多少?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在小水池旁有一盏路灯,已知支架AB的长是0.8m,A端到地面的距离AC4m,支架AB与灯柱AC的夹角为65°.小明在水池的外沿D测得支架B端的仰角是45°,在水池的内沿E测得支架A端的仰角是50°(点C、E、D在同一直线上),求小水池的宽DE.(结果精确到0.1m)(sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用直尺和圆规画一个角等于已知角是运用了全等三角形的对应角相等这一性质其全等的依据是( )

ASAS BASA CAAS DSSS

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等腰三角形ABC中,∠A、∠B、∠C的对边分别为a、b、c,已知a=3,b和c是关于x的方程x2+mx+2-m=0的两个实数根.

(1)ABC的周长.

(2)ABC的三边均为整数时的外接圆半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】Rt△ABC中,直角边为a、b,斜边为c.若把关于x的方程ax2+cx+b=0称为勾系一元二次方程,则这类勾系一元二次方程的根的情况是(  )

A. 有两个不相等的实数根 B. 有两个相等的实数根

C. 没有实数根 D. 一定有实数根

查看答案和解析>>

同步练习册答案