精英家教网 > 初中数学 > 题目详情
15.如图,抛物线y=-$\frac{1}{2}$x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(-1,0),C(0,2).
(1)求抛物线的表达式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由.

分析 (1)由待定系数法建立二元一次方程组求出求出m、n的值即可;
(2)由(1)的解析式求出顶点坐标,再由勾股定理求出CD的值,再以点C为圆心,CD为半径作弧交对称轴于P1,以点D为圆心CD为半径作圆交对称轴于点P2,P3

解答 解:(1)∵抛物线y=-$\frac{1}{2}$x2+mx+n经过A(-1,0),C(0,2).
解得:$\left\{\begin{array}{l}{m=\frac{3}{2}}\\{n=2}\end{array}\right.$,
∴抛物线的解析式为:y=-$\frac{1}{2}$x2+$\frac{3}{2}$x+2;

(2)∵y=-$\frac{1}{2}$x2+$\frac{3}{2}$x+2,
∴y=-$\frac{1}{2}$(x-$\frac{3}{2}$)2+$\frac{25}{8}$,
∴抛物线的对称轴是直线x=$\frac{3}{2}$.
∴OD=$\frac{3}{2}$.
∵C(0,2),
∴OC=2.
在Rt△OCD中,由勾股定理,得
CD=$\frac{5}{2}$.
∵△CDP是以CD为腰的等腰三角形,
∴CP1=DP2=DP3
作CH⊥x轴于H,
∴HP1=HD=2,
∴DP1=4.
∴P1($\frac{3}{2}$,4),P2($\frac{3}{2}$,$\frac{5}{2}$),P3($\frac{3}{2}$,-$\frac{5}{2}$).

点评 本题考查了待定系数法求二次函数的解析式的运用、等腰三角形的性质的运用,利用分类讨论得出P点坐标是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.先化简,再求值:$\frac{{a}^{2}-{b}^{2}}{a}$÷(a-$\frac{2ab-{b}^{2}}{a}$),其中a=2+$\sqrt{3}$,b=2-$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.一个正方形的面积为1,那么以它的对角线为边长的正方形的面积是2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在△ABC中,∠C=90°,AC=4,BC=3,点P从点A出发,以每秒4个单位长度的速度沿折线AC-CB运动,到点B停止.当点P不与△ABC的顶点重合时,过点P作其所在直角边的垂线交AB 于点Q,再以PQ为斜边作等腰直角三角形△PQR,且点R与△ABC的另一条直角边始终在PQ同侧,设△PQR与△ABC重叠部分图形的面积为S(平方单位).点P的运动时间为t(秒).
(1)求点P在AC边上时PQ的长,(用含t的代数式表示);
(2)求点R到AC、PQ所在直线的距离相等时t的取值范围;
(3)当点P在AC边上运动时,求S与t之间的函数关系式;
(4)直接写出点R落在△ABC高线上时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,P为正方形ABCD对角线AC上一动点,EF⊥AC且交AD于E,交CD的延长线于点G,连接CE和AG.
(1)求证:△ADG≌△CDE;
(2)当CE平分∠ACD时,求tan∠AGD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图,求证:△ADC≌△CEB.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知矩形ABCD中,AB=2,AD=5,点E是AD边上一动点,连接BE,CE,以BE为直径作⊙O,交BC于点F,过点F作FH⊥CE于点H,直线FH交⊙O于点G.
(1)当直线FH与⊙O相切时,求AE的长;
(2)当FH∥BE时,求FG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.某中学九年级1班全体同学的综合素质评价“运动与健康”方面的等级统计如图所示,
其中评价为“A”所在扇形的圆心角是(  )
A.120°B.108°C.90°D.30°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.2014年底,我国核电装机容量大约为2000万千瓦,到2016年底我国核电装机容量将达到约3200万千瓦.若设平均每年的增长率为x,则可列方程为(  )
A.2000(1+x)=3200B.2000(1+2x)=3200C.2000(1+x)2=3200D.2000(1+x2)=3200

查看答案和解析>>

同步练习册答案