精英家教网 > 初中数学 > 题目详情

【题目】我们规定:若=(a,b),=(c,d),则=ac+bd.如=(1,2),=(3,5),则=1×3+2×5=13.

(1)已知=(2,4),=(2,﹣3),求

(2)已知=(x﹣a,1),=(x﹣a,x+1),求y=,问y=的函数图象与一次函数y=x﹣1的图象是否相交,请说明理由.

【答案】(1)﹣8;(2)不相交

【解析】

试题分析:(1)直接利用=(a,b),=(c,d),则=ac+bd,进而得出答案;

(2)利用已知的出y与x之间的函数关系式,再联立方程,结合根的判别式求出答案.

试题解析:(1)=(2,4),=(2,﹣3),=2×2+4×(﹣3)=﹣8;

(2)=(x﹣a,1),=(x﹣a,x+1),y===联立方程:,化简得:∵△==﹣80,方程无实数根,两函数图象无交点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=﹣x+4.

问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.

(1)直接写出点D(m,n)所有的特征线;

(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;

(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)=

(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;

(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法中:(1)垂直于弦的直径平分这条弦并且平分这条弦所对的两条弧;(2)半圆是弧;(3)长度相等的弧是等弧;(4)平分弦的直径垂直于这条弦;正确的个数有(

A.0B.1C.2D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=﹣3x12+6的顶点坐标为(  )

A.16B.1,﹣6C.(﹣1,﹣6D.(﹣16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料并回答问题:

材料1:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为

古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.

我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:

下面我们对公式②进行变形:

这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.

问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.

(1)求△ABC的面积;

(2)求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.

求证:
(1)∠ECD=∠EDC;
(2)OC=OD;
(3)OE是线段CD的垂直平分线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCD,AB=6 cm,BC=8 cm,ABCD的周长为____cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】绝对值小于4的所有整数的和是( )
A.4
B.8
C.0
D.1

查看答案和解析>>

同步练习册答案