【题目】小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步,中途改为步行,到达图书馆恰好用时.小东骑自行车以的速度直接回家,两人离家的路程与各自离开出发地的时间之间的函数图象如图所示,下列说法正确的有几个.( )
①家与图书馆之间的路程为;
②小玲步行的速度为;
③两人出发以后8分钟相遇;
④两人出发以后,、时相距.
A.1B.2
C.3D.4
科目:初中数学 来源: 题型:
【题目】根据材料,解答问题
如图,数轴上有点,对应的数分别是6,-4,4,-1,则两点间的距离为;两点间的距离为;两点间的距离为;由此,若数轴上任意两点分别表示的数是,则两点间的距离可表示为.反之,表示有理数在数轴上的对应点之间的距离,称之为绝对值的几何意义.
问题应用1:
(1)如果表示-1的点和表示的点之间的距离是2,则点对应的的值为___________;
(2)方程的解____________;
(3)方程的解______________ ;
问题应用2:
如图,若数轴上表示的点为.
(4)的几何意义是数轴上_____________,当__________,的值最小是____________;
(5)的几何意义是数轴上_______,的最小值是__________,此时点在数轴上应位于__________上;
(6)根据以上推理方法可求的最小值是___________,此时__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点,第二次点跳动至点第三次点跳动至点,第四次点跳动至点……,依此规律跳动下去,则点与点之间的距离是( )
A. 2017B. 2018C. 2019D. 2020
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一面靠墙的空地上用长为24 m的篱笆围成中间隔有二道篱笆的长方形花圃.设花圃的宽AB为x m,面积为S m2.
(1)求S与x的函数关系式及自变量的取值范围;
(2)已知墙的最大可用长度为8 m,
①求所围成花圃的最大面积;
②若所围花圃的面积不小于20 m2,请直接写出x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若 x 满足 (9x)(x4)=4, 求 (4x)2+(x9)2 的值.
设 9x=a,x4=b, 则 (9x)(x4)=ab=4,a+b=(9x)+(x4)=5 ,
∴(9x)2+(x4)2=a2+b2=(a+b)22ab=522×4=13
请仿照上面的方法求解下面问题:
(1)若 x 满足 (5x)(x2)=2, 求 (5x)2+(x2)2 的值
(2)已知正方形 ABCD 的边长为 x , E , F 分别是 AD 、 DC 上的点,且 AE=1 , CF=3 ,长方形 EMFD 的面积是 48 ,分别以 MF 、 DF 作正方形,求阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.
(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;
(2)将线段绕点逆时针旋转90°得到线段.画出线段;
(3)以为顶点的四边形的面积是 个平方单位.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB与⊙O相切于点A,弦CD∥AB,E、F为圆上的两点,且∠CDE=∠ADF.若⊙O的半径为,CD=4,则弦EF的长为( )
A. 4 B. 2
C. 5 D. 6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,PA,PB是⊙O的切线,A,B为切点,点C在PB上,OC∥AP,CD⊥AP于点D.
(1)求证:OC=AD;
(2)若∠P=50°,⊙O的半径为4,求四边形AOCD的周长(精确到0.1,参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com