精英家教网 > 初中数学 > 题目详情

如图,已知二次函数的图象是经过A(1,0),B(3,0),E(0,6)三点的一条抛
物线.
(1)求该二次函数的解析式.
(2)设该抛物线的顶点为C,对称轴交x轴于点D,在y轴上是否存在这样的点P,使以点A、0、P为顶点的三角形与△ACD相似但不全等?若存在,请写出点P的坐标;若不存在,请说明理由.
(3)设Q为直线CD上一动点,S点的坐标为(-1,0),ST为以Q为圆心,QA为半径的⊙Q的切线,T为切点,试问:当点Q在直线CD上移动时,切线ST的长是否发生变化?试证明你的结论.

(1)解:由题意可设二次函数的解析式为:y=a(x-1)(x-3),
又抛物线过点E(0,6)
∴6=a×(-1)×(-3)
解得:a=2,
故所求二次函数的解析式为:y=2(x-1)(x-3)=2x2-8x+6;

(2)解:由y=2x2-8x+6=2(x-2)2-2,
可知顶点C的坐标为(2,-2),
点D的坐标为(2,0),
CD=2,AD=1 则=2,
设在y轴上存在点P(0,y),
若△OAP与△ACD相似且不全等,
==2或==
当OP=2OA时,△OAP≌△DAC,不合题意,
当OP=OA时,即OP=时,△OAP与△DCA相似,
OP=|y|,
∴|y|=
解得:y=±
∴符合条件的点有两个:P1(0,),P2(0,-);

(3)当点Q在直线CD上移动时,切线ST的长不发生变化;
理由:连接QS,QT.
∵抛物线的对称轴CD为直线x=2,
点Q为直线x=2上的动点,设点Q的坐标为(2,q)
∴QA==
QS==
T为直线ST与⊙Q的切点,∴QT=QA=
Rt△STQ中,ST2=SQ2-TQ2=(9+q2)-(1+q2)=8,
∴ST==2(常数)
∴点Q在直线CD上移动时,切线ST的长为常数2
分析:(1)利用交点式将A(1,0),B(3,0),E(0,6)代入求出二次函数解析式即可;
(2)根据(1)中所求得出二次函数的顶点坐标,进而得出△OAP与△ACD相似且不全等时,则==2或==,求出P点坐标即可;
(3)首先得出点Q为直线x=2上的动点,设点Q的坐标为(2,q),则QA==,QS==,得出ST的值即可.
点评:此题主要考查了待定系数法求二次函数解析式以及相似三角形的判定与性质和勾股定理等知识,注意分类讨论得出不要漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知二次函数的图象经过点A(3,3)、B(4,0)和原点O.P为二次函数图象上精英家教网的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA交于点C.
(1)求出二次函数的解析式;
(2)当点P在直线OA的上方时,求线段PC的最大值;
(3)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,如果存在,求出P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•呼和浩特)如图,已知二次函数的图象经过点A(6,0)、B(-2,0)和点C(0,-8).
(1)求该二次函数的解析式;
(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为
6
7
,0)
6
7
,0)

(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S.
①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由;
②请求出S关于t的函数关系式,并写出自变量t的取值范围;
③设S0是②中函数S的最大值,直接写出S0的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•常德)如图,已知二次函数的图象过点A(0,-3),B(
3
3
),对称轴为直线x=-
1
2
,点P是抛物线上的一动点,过点P分别作PM⊥x轴于点M,PN⊥y轴于点N,在四边形PMON上分别截取PC=
1
3
MP,MD=
1
3
OM,OE=
1
3
ON,NF=
1
3
NP.
(1)求此二次函数的解析式;
(2)求证:以C、D、E、F为顶点的四边形CDEF是平行四边形;
(3)在抛物线上是否存在这样的点P,使四边形CDEF为矩形?若存在,请求出所有符合条件的P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数的图象与x轴交于A(2,0)、B(6,0)两点,与y轴交于点D(0,4).
(1)求该二次函数的表达式;
(2)写出该抛物线的顶点C的坐标;
(3)求四边形ACBD的面积?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数的图象(0≤x≤3.4),关于该函数在所给自变量的取值范围内,下列说法正确的是(  )

查看答案和解析>>

同步练习册答案