【题目】在Rt△ABC中,∠ACB=90°,tan∠BAC=. 点D在边AC上(不与A,C重合),连结BD,F为BD中点.
(1)若过点D作DE⊥AB于E,连结CF、EF、CE,如图1.设,则k= ;
(2)若将图1中的△ADE绕点A旋转,使得D、E、B三点共线,点F仍为BD中点,如图2所示.求证:BE-DE=2CF;
(3)若BC=6,点D在边AC的三等分点处,将线段AD绕点A旋转,点F始终为BD中点,求线段CF长度的最大值.
【答案】(1)k=1(2)证明,则可得. (3)当点D在靠近点C的
三等分点时,线段CF的长度取得最大值为
【解析】试题分析:解:(1)k=1; .
(2)如图2,过点C作CE的垂线交BD于点G,设BD与AC的交点为Q.
由题意,tan∠BAC=,
∴.
∵D、E、B三点共线,
∴AE⊥DB.
∵∠BQC=∠AQD,∠ACB=90°,
∴∠QBC=∠EAQ.
∵∠ECA+∠ACG=90°,∠BCG+∠ACG=90°,
∴∠ECA=∠BCG.
∴.
∴.
∴GB=DE.
∵F是BD中点,
∴F是EG中点.
在中, ,
∴. . .
(3)情况1:如图,当AD= 时,取AB的中点M,连结MF和CM,
∵∠ACB=90°, tan∠BAC=,且BC= 6,
∴AC=12,AB=.
∵M为AB中点,∴CM=,
∵AD= ,
∴AD=.
∵M为AB中点,F为BD中点,
∴FM= = 2.
∴当且仅当M、F、C三点共线且M在线段CF上时CF最大,此时CF=CM+FM=.
情况2:如图,当AD= 时,取AB的中点M,连结MF和CM,
类似于情况1,可知CF的最大值为.
. 6分
综合情况1与情况2,可知当点D在靠近点C的
三等分点时,线段CF的长度取得最大值为
科目:初中数学 来源: 题型:
【题目】如图,直线与直线和直线分别交于点(在的上方).
直线和直线交于点,点的坐标为 ;
求线段的长(用含的代数式表示);
点是轴上一动点,且为等腰直角三角形,求的值及点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y=(x>0)过点A(3,4),直线AC与x轴交于点C(6,0),过点C作x轴的垂线BC交反比例函数图象于点B.
(1)求k的值与B点的坐标;
(2)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,试写出符合条件的所有D点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】世纪隆超市举行有奖促销活动:凡一次性购物满300元者即可获得一次摇奖机会。摇奖机是一个圆形转盘,被分成16等分,摇中红、黄、蓝色区域,分获一、二、三获奖,奖金依次为60、50、40元。一次性购物满300元者,如果不摇奖可返还现金15元。
(1)摇奖一次,获一等奖的概率是多少?
(2)摇奖一次,获奖的概率是多少?
(3)老李一次性购物满了300元,他是参与摇奖划算还是领15元现金划算?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中, , 是的角平分线,以为圆心, 为半径作⊙.
()求证: 是⊙的切线.
()已知交⊙于点,延长交⊙于点, ,求的值.
()在()的条件下,设⊙的半径为,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学原计划加工一批校服,现有甲、乙两个工厂加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天加工这种校服24件,且单独加工这批校服甲厂比乙厂要多用20天
(1)求这批校服共有多少件?
(2)为了尽快完成这批校服,若先由甲、乙两工厂按原速度合作一段时间后,甲工厂停工,而乙工厂每天的速度提高25%,乙工厂单独完成剩下的部分,且乙工厂全部工作时间是甲工厂工作时间的2倍还多4天,求乙工厂加工多少天
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,三角形ABC三边的长分别为AB=m2﹣n2,AC=2mn,BC=m2+n2,其中m、n都是正整数.以AB、AC、BC为边分别向外画正方形,面积分别为S1、S2、S3,那么S1、S2、S3之间的数量关系为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为积极响应“弘扬传统文化”的号召,某学校倡导全校1200名学生进行经典诗词诵背活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查“一周诗词诵背数量”,根调查结果绘制成的统计图(部分)如图所示.
大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表
一周诗词诵背数量 | 3首 | 4首 | 5首 | 6首 | 7首 | 8首 |
人数 | 10 | 10 | 15 | 40 | 25 | 20 |
请根据调查的信息
(1)活动启动之初学生“一周诗词诵背数量”的中位数为 ;
(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;
(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在△ABC中,∠A=90°.
(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明);
(2)在(1)的条件下,若∠B=45°,AB=1,⊙P切BC于点D,求劣弧的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com