精英家教网 > 初中数学 > 题目详情

【题目】如图,三角形ABC三边的长分别为ABm2n2AC2mnBCm2+n2,其中mn都是正整数.以ABACBC为边分别向外画正方形,面积分别为S1S2S3,那么S1S2S3之间的数量关系为_____

【答案】S1+S2S3

【解析】

首先利用勾股定理的逆定理判定△ABC是直角三角形,设RtABC的三边分别为abc,再分别用abc表示S1S2S3的值,由勾股定理即可得出S1S2S3之间的数量关系.

解:∵AB=m2-n2AC=2mnBC=m2+n2
AB2+AC2=BC2
∴△ABC是直角三角形,
RtABC的三边分别为abc
S1=c2S2=b2S3=a2
∵△ABC是直角三角形,
b2+c2=a2,即S1+S2=S3
故答案为:S1+S2=S3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】由大小相同(棱长为1分米)的小立方块搭成的几何体如下图.

(1)请在右图的方格中画出该几何体的俯视图和左视图;

(2)图中有 块小正方体,它的表面积(含下底面)为

(3)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要_______个小立方块,最多要_______个小立方块.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,飞机在一定高度上沿水平直线飞行,先在点处测得正前方小岛的俯角为,面向小岛方向继续飞行到达处,发现小岛在其正后方,此时测得小岛的俯角为.如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,ACB=90°tanBAC=. D在边AC上(不与AC重合),连结BDFBD中点.

1)若过点DDEABE,连结CFEFCE,如图1.设,则k=

2)若将图1中的ADE绕点A旋转,使得DEB三点共线,点F仍为BD中点,如图2所示.求证:BE-DE=2CF

3)若BC=6,点D在边AC的三等分点处,将线段AD绕点A旋转,点F始终为BD中点,求线段CF长度的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】双蓉服装店老板到厂家购AB两种型号的服装,若购A种型号服装6件,B种型号服装16件,需要1260元;若购进A种型号服装12件,B种型号服装8件,需要1080元。

1)求AB两种型号的服装每件分别为多少元?

2)若销售一件A型服装可获利20元,销售一件B型服装可获利30元,根据市场需要,服装店老板决定:购进A型服装的数量要比购进B型服装的数量的2倍还多4件,且A型服装最多可购进28件,这样服装全部售出后可使总的获利不少于780元,问有几种进货方案?如何进货?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球 B.乒乓球C.羽毛球 D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,

请回答下列问题:

1)这次被调查的学生共有多少人?

2)请你将条形统计图(2)补充完整;

3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,用三种大小不同的5个正方形和一个长方形(阴影部分)拼成长方形ABCD,其中EF=2厘米,最小的正方形的边长为x厘米.

1)用含x的代数式表示FG=________厘米,DG=________厘米.

2)若长方形ABCD的周长等于52,求x的值

3)若FGDG=23,求四边形FGDH(阴影部分)的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数 y=kx+b 的图像如图所示,则当kx+b>0 时,x 的取值范围为___________.

【答案】x>1

【解析】分析:题目要求 kx+b>0,即一次函数的图像在x 轴上方时,观察图象即可得x的取值范围.

详解:

∵kx+b>0,

一次函数的图像在x 轴上方时,

∴x的取值范围为:x>1.

故答案为:x>1.

点睛:本题考查了一次函数与一元一次不等式的关系,主要考查学生的观察视图能力.

型】填空
束】
16

【题目】菱形ABCD中, ,其周长为32,则菱形面积为____________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面上有四个点ABCD,请用直尺按下列要求作图:

1)作直线AB

2)作射线BC

3)连接AD,并将其反向延长至E,使DE2AD

4)找到一点F,使点FABCD四点的距离之和最短.

查看答案和解析>>

同步练习册答案