精英家教网 > 初中数学 > 题目详情
如图,在ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE于G,BG=,则梯形AECD的周长为(   )
A.22B.23C.24D.25
A.

试题分析:由在?ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,易得△ABE是等腰三角形,继而求得BE与CE的长,又由BG⊥AE于G,BG=,即可求得AE的长,继而求得答案:
∵四边形ABCD是平行四边形,∴BC=AD=9,CD=AB=6,AD∥BC. ∴∠DAE=∠AEB.
∵AE平分∠BAD,∴∠DAE=∠BAE. ∴∠BAE=∠BEA. ∴BE="AB=6." ∴EC=BC-BE=3.
∵BG⊥AE,∴.
∴AE=AG+EG=4.
∴梯形AECD的周长为:AD+CD+CE+AE=9+6+3+4=22.
故选A.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

小明在一次数学兴趣小组活动中,对一个数学问题作如下探究:
问题情境:如图1,四边形ABCD中,AD∥BC,点E为DC边的中点,连接AE并延长交BC的延长线于点F,求证:S四边形ABCD=SABF(S表示面积)

问题迁移:如图2:在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.小明将直线MN绕着点P旋转的过程中发现,△MON的面积存在最小值,请问当直线MN在什么位置时,△MON的面积最小,并说明理由.

实际应用:如图3,若在道路OA、OB之间有一村庄Q发生疫情,防疫部门计划以公路OA、OB和经过防疫站P的一条直线MN为隔离线,建立一个面积最小的三角形隔离区△MON.若测得∠AOB=66°,∠POB=30°,OP=4km,试求△MON的面积.(结果精确到0.1km2)(参考数据:sin66°≈0.91,tan66°≈2.25,≈1.73)
拓展延伸:如图4,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,0)(6,3)()、(4、2),过点p的直线l与四边形OABC一组对边相交,将四边形OABC分成两个四边形,求其中以点O为顶点的四边形面积的最大值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

边长为2的正方形ABCD的两顶点A、C分别在正方形EFGH的两边DE、DG上(如图1),现将正方形ABCD绕D点顺时针旋转,当A点第一次落在DF上时停止旋转,旋转过程中, AB边交DF于点M,BC边交DG于点N.
(1)求边DA在旋转过程中所扫过的面积;
(2)旋转过程中,当MN和AC平行时(如图2),求正方形ABCD旋转的度数;
(3)如图3,设△MBN的周长为p,在旋转正方形ABCD的过程中,p值是否有变化?请证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.
(1)求证:①△ABG≌△AFG; ②BG=GC;
(2)求△FGC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

顺次连接四边形四边中点所组成的四边形是菱形,则原四边形为       (     )
A.平行四边形B.菱形C.对角线相等的四边形D.对角线垂直的四边形

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在?ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是      (结果保留π).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知等腰梯形ABCD的底角∠B=45°,高AE=1,上底AD=1,则其面积为(  )
A.4B.C.1D.2

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是 ( )
A.一组邻边相等的四边形是菱形
B.四边相等的四边形是菱形
C.对角线互相垂直的平行四边形是菱形
D.每条对角线平分一组对角的平行四边形是菱形

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在平行四边形ABCD中,∠B+∠D=200o, 则∠A=      ,∠D=      

查看答案和解析>>

同步练习册答案