1£®Ð¡Ã÷ºÍ°Ö°Ö´Ó¼Ò²½ÐÐÈ¥¹«Ô°£¬°Ö°ÖÏȳö·¢Ò»Ö±ÔÈËÙǰÐУ¬Ð¡Ã÷ºó³ö·¢£®¼Òµ½¹«Ô°µÄ¾àÀëΪ2500m£¬ÈçͼÊÇСÃ÷ºÍ°Ö°ÖËù×ß·³Ìs£¨m£©Óë²½ÐÐʱ¼ät£¨min£©µÄº¯ÊýͼÏó£®
£¨1£©Í¼ÖÐÏßl2£¨Ìîl1»òl2£©±íʾµÄÊǰְÖËù×ß·³ÌÓë²½ÐÐʱ¼äµÄº¯Êý¹ØÏµÊ½£®
£¨2£©Çë·Ö±ðÇó³öl1ÖÐBC¶ÎÒÔ¼°l2µÄº¯Êý¹ØÏµÊ½£®
£¨3£©ÇëÇó³öСÃ÷³ö·¢¶àÉÙʱ¼äÓë°Ö°ÖµÚ×îºóÒ»´ÎÏàÓö£®
£¨3£©ÔÚËٶȲ»±äµÄÇé¿öÏ£¬Ð¡Ã÷Ï£Íû±È°Ö°ÖÔç20minµ½´ï¹«Ô°£¬ÔòСÃ÷ÔÚ²½Ðйý³ÌÖÐÍ£ÁôµÄʱ¼äÐè×÷ÔõÑùµÄµ÷Õû£®

·ÖÎö £¨1£©ÓÉͼÏó¿ÉÖª£¬Ö±Ïßl2±íʾµÄÊÇСÃ÷µÄ°Ö°ÖËù×ß·³ÌÓë²½ÐÐʱ¼äµÄº¯Êý¹ØÏµÊ½£®£»
£¨2£©ÀûÓôý¶¨ÏµÊý·¨¼´¿É½â¾öÎÊÌ⣮
£¨3£©ÀûÓ÷½³Ì×éÇó³öµÚÈý´ÎÏàÓöµÄʱ¼ä¼´¿É£®
£¨4£©·Ö±ð¼ÆËã³öСÃ÷µÄ°Ö°Öµ½´ï¹«Ô°ÐèÒªµÄʱ¼ä¡¢Ð¡Ã÷µ½´ï¹«Ô°ÐèÒªµÄʱ¼ä£¬¼ÆËã¼´¿É£®

½â´ð ½â£º£¨1£©ÓÉͼÏó¿ÉÖª£¬Ö±Ïßl2±íʾµÄÊÇСÃ÷µÄ°Ö°ÖËù×ß·³ÌÓë²½ÐÐʱ¼äµÄº¯Êý¹ØÏµÊ½£®
¹Ê´ð°¸Îªl2£®

£¨2£©ÉèÖ±Ïßl2º¯Êý¹ØÏµÊ½Îª£ºs=kt+b£¬Ôò $\left\{\begin{array}{l}{25k+b=1000}\\{b=250}\end{array}\right.$£¬
½âµÃ $\left\{\begin{array}{l}{k=30}\\{b=250}\end{array}\right.$£¬
ÔòСÃ÷ºÍ°Ö°ÖËù×ߵķ³ÌÓë²½ÐÐʱ¼äµÄ¹ØÏµÊ½Îª£ºs=30t+250£¬
ÉèÖ±ÏßBCµÄ½âÎöʽΪs=mt+n£¬ÔòÓÐ$\left\{\begin{array}{l}{30m+n=1000}\\{60m+n=2500}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{m=50}\\{n=-500}\end{array}\right.$£¬
¡àÖ±ÏßBCµÄ½âÎöʽΪs=50t-500£®

£¨3£©ÓÉ$\left\{\begin{array}{l}{s=50t-500}\\{s=30t+250}\end{array}\right.$£¬½âµÃt=37.5min£¬
¡àСÃ÷³ö·¢37.5minÓë°Ö°ÖµÚ×îºóÒ»´ÎÏàÓö£®

£¨4£©30t+250=2500£¬
½âµÃ£¬t=75£¬
ÔòСÃ÷µÄ°Ö°Öµ½´ï¹«Ô°ÐèÒª75min£¬
¡ßСÃ÷µ½´ï¹«Ô°ÐèÒªµÄʱ¼äÊÇ60min£¬
¡àСÃ÷Ï£Íû±È°Ö°ÖÔç20minµ½´ï¹«Ô°£¬ÔòСÃ÷ÔÚ²½Ðйý³ÌÖÐÍ£ÁôµÄʱ¼äÐè¼õÉÙ5min£®

µãÆÀ ±¾Ì⿼²éµÄÊÇÒ»´Îº¯ÊýµÄÓ¦Óã¬ÕÆÎÕ´ý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý½âÎöʽ¡¢¶Á¶®º¯ÊýͼÏóÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Ð¡Ã÷°ÑÈçͼËùʾµÄ¾ØÐÎÖ½°åABCD¹ÒÔÚǽÉÏ£¬EΪADÖе㣬ÇÒ¡ÏABD=60¡ã£¬²¢ÓÃËüÍæ·ÉïÚÓÎÏ·£¨Ã¿´Î·ÉïÚ¾ùÂäÔÚÖ½°åÉÏ£©£¬»÷ÖÐÒõÓ°ÇøÓòµÄ¸ÅÂÊÊÇ$\frac{1}{8}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èçͼ£¬µãCÔÚÏß¶ÎABÉÏ£¬µãDÊÇACµÄÖе㣬Èç¹ûCB=$\frac{3}{2}$CD£¬AB=10.5cm£¬ÄÇôBCµÄ³¤Îª£¨¡¡¡¡£©
A£®A2.5cmB£®3cmC£®4.5cmD£®6cm

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Ò»¸öÖ±ÀâÖùÓÐ12ÌõÀ⣬ÔòËüÊÇËÄÀâÖù£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®·½³Ì$\frac{x}{4}$=-$\frac{1}{2}$x+3µÄ½âΪ£¨¡¡¡¡£©
A£®x=4B£®x=$\frac{9}{4}$C£®x=-4D£®x=$\frac{3}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®Èç¹ûx£ºy=2£º3£¬ÄÇô$\frac{x+y}{y}$=$\frac{5}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®»¯¼ò²¢ÇóÖµ£º£¨m+1£©2+£¨m+1£©£¨m-1£©£¬ÆäÖÐmÊÇ·½³Ìx2+x-1=0µÄÒ»¸ö¸ù£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º3£¨2a2b-ab2£©-2£¨-ab2+4a2b£©+ab2£¬ÆäÖÐa=-2£¬b=3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®ÔĶÁÏÂÃæ²ÄÁÏ£º
ÔÚÊýѧ¿ÎÉÏ£¬ÀÏʦÌá³öÀûÓó߹æ×÷ͼÍê³ÉÏÂÃæÎÊÌ⣺
ÒÑÖª£º¡ÏACBÊÇ¡÷ABCµÄÒ»¸öÄڽǣ®
Çó×÷£º¡ÏAPB=¡ÏACB£®
СÃ÷µÄ×ö·¨ÈçÏ£º
Èçͼ
¢Ù×÷Ïß¶ÎABµÄ´¹Ö±Æ½·ÖÏßm£»
¢Ú×÷Ïß¶ÎBCµÄ´¹Ö±Æ½·ÖÏßn£¬ÓëÖ±Ïßm½»ÓÚµãO£»
¢ÛÒÔµãOΪԲÐÄ£¬OAΪ°ë¾¶×÷¡÷ABCµÄÍâ½ÓÔ²£»
¢ÜÔÚ»¡ACBÉÏȡһµãP£¬Á¬½áAP£¬BP£®
ËùÒÔ¡ÏAPB=¡ÏACB£®
ÀÏʦ˵£º¡°Ð¡Ã÷µÄ×÷·¨ÕýÈ·£®¡±
Çë»Ø´ð£º
£¨1£©µãOΪ¡÷ABCÍâ½ÓÔ²Ô²ÐÄ£¨¼´OA=OB=OC£©µÄÒÀ¾ÝÊÇ¢ÙÏ߶δ¹Ö±Æ½·ÖÏßÉϵĵãÓëÕâÌõÏß¶ÎÁ½¸ö¶ËµãµÄ¾àÀëÏàµÈ£»¢ÚµÈÁ¿´ú»»£»
£¨2£©¡ÏAPB=¡ÏACBµÄÒÀ¾ÝÊÇͬ»¡Ëù¶ÔµÄÔ²ÖܽÇÏàµÈ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸