精英家教网 > 初中数学 > 题目详情
6.如图,已知点A在反比例函数y=$\frac{2}{x}$在第一象限上运动,过点O作OB⊥OA,当tanA=$\sqrt{2}$时,点B恰好落在反比例函数y=$\frac{k}{x}$在第二象限的图象上,则k的值为-4.

分析 过A作AN⊥x轴于N,过B作BM⊥x轴于M.设设A(x,$\frac{2}{x}$)(x>0),则ON•AN=2,由tan∠A=$\sqrt{2}$,可得出$\frac{OB}{OA}$=$\sqrt{2}$.通过△MBO∽△NOA的对应边成比例求得k=-OM•BM=-4.

解答 解:过A作AN⊥x轴于N,过B作BM⊥x轴于M.
∵第一象限内的点A在反比例函数y的图象上,
∴设A(x,$\frac{2}{x}$)(x>0),ON•AN=2.
∵tan∠A=$\sqrt{2}$,
∴$\frac{OB}{OA}$=$\sqrt{2}$,
∵OA⊥OB,
∴∠BMO=∠ANO=∠AOB=90°,
∴∠MBO+∠BOM=90°,∠MOB+∠AON=90°,
∴∠MBO=∠AON,
∴△MBO∽△NOA,∴$\frac{BM}{ON}$=$\frac{OM}{AN}$=$\frac{OB}{OA}$=$\sqrt{2}$,
∴BM=$\sqrt{2}$ON,OM=$\sqrt{2}$AN.
又∵第二象限的点B在反比例函数y=$\frac{k}{x}$上,
∴k=-OM•BM=-$\sqrt{2}$ON×$\sqrt{2}$AN=-4.
故答案为-4.

点评 本题考查了用待定系数法求出反比例函数的解析式,相似三角形的性质和判定的应用,解此题的关键是求出B的坐标.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(-2,0)、B(0,1)、C(m,n).
(1)求C点坐标;
(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B′、C′正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B′C′的解析式;
(3)在(2)的条件下,直线B′C′交y轴于点G.问是否存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMC′是平行四边形?如果存在,请求出点M和点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.若多项式a2+4a+k2是完全平方式,则常数k的值为(  )
A.2B.4C.±4D.±2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,在矩形ABCD中,AB=10,BC=5,若点M、N分别是线段AC、AB上的两个动点,则BM+MN的最小值为8.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,在6×6的正方形网格中,连结两格点A,B,线段AB与网格线的交点为M、N,则AM:MN:NB为(  )
A.3:5:4B.1:3:2C.1:4:2D.3:6:5

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,在平行四边形ABCD中,点E、F分别为AB、BC中点,则三角形BEF与多边形EFCDA的面积之比为1:7.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,AB是⊙O的直径,AB=2,点C是半圆弧AB上的一点,且∠CAB=40°,点D是BC的中点,点P是直径AB上的动点,则线段PC+PD的最小值是$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知反比例函数y=$\frac{a+4}{x}$(a为常数)的图象经过点B(-4,2).
(1)求a的值;
(2)如图,过点B作直线AB与函数y=$\frac{a+4}{x}$的图象交于点A,与x轴交于点C,且AB=3BC,过点A作直线AF⊥AB,交x轴于点F,求线段AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在矩形ABCD中,AE平分∠BAD,交BC于E,过E做EF⊥AD于F,连接BF交AE于P,连接PD.
(1)求证:四边形ABEF是正方形;
(2)如果AB=4,AD=7,求tan∠ADP的值.

查看答案和解析>>

同步练习册答案