相等且垂直
分析:根据全等三角形对应边相等可得BC=DE,全等三角形对应角相等可得∠C=∠E,根据垂直的定义求出∠BAC=90°,然后求出∠B+∠E=90°,从而得到∠BFE=90°,即BC⊥DE.
解答:

解:∵△ABC≌△ADE,
∴BC=DE,∠C=∠E,
∵CA⊥BE,
∴∠BAC=90°,
∵∠B+∠C=180°-∠BAC=180°-90°=90°,
∴∠B+∠E=90°,
∴∠BFE=180°-(∠B+∠E)=180°-90°=90°,
∴BC⊥DE,
故BC与DE的关系是相等且垂直.
故答案为:相等且垂直.
点评:本题考查了全等三角形的性质,主要利用了全等三角形对应边相等,全等三角形对应角相等,垂直的定义,熟记性质是解题的关键.