精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA= ,抛物线y=ax2﹣ax﹣a经过点B(2, ),与y轴交于点D.

(1)求抛物线的表达式;
(2)点B关于直线AC的对称点是否在抛物线上?请说明理由;
(3)延长BA交抛物线于点E,连接ED,试说明ED∥AC的理由.

【答案】
(1)

解:把点B的坐标代入抛物线的表达式,得 =a×22﹣2a﹣a,

解得a=

∴抛物线的表达式为y= x2 x﹣


(2)

解:连接CD,过点B作BF⊥x轴于点F,则∠BCF+∠CBF=90°

∵∠ACB=90°,

∴∠ACO+∠BCF=90°,

∴∠ACO=∠CBF,

∵∠AOC=∠CFB=90°,

∴△AOC∽△CFB,

=

设OC=m,则CF=2﹣m,则有 =

解得m1=m2=1,

∴OC=CF=1,

当x=0时,y=﹣

∴OD=

∴BF=OD,

∵∠DOC=∠BFC=90°,

∴△OCD≌△FCB,

∴DC=CB,∠OCD=∠FCB,

∴点B、C、D在同一直线上,

∴点B与点D关于直线AC对称,

∴点B关于直线AC的对称点在抛物线上.


(3)

解:过点E作EG⊥y轴于点G,设直线AB的表达式为y=kx+b,则

解得k=﹣

∴y=﹣ x+ ,代入抛物线的表达式﹣ x+ = x2 x﹣

解得x=2或x=﹣2,

当x=﹣2时y=﹣ x+ =﹣ ×(﹣2)+ =

∴点E的坐标为(﹣2, ),

∵tan∠EDG= = =

∴∠EDG=30°

∵tan∠OAC= = =

∴∠OAC=30°,

∴∠OAC=∠EDG,

∴ED∥AC.


【解析】(1)把点B的坐标代入抛物线的表达式即可求得.(2)通过△AOC∽△CFB求得OC的值,通过△OCD≌△FCB得出DC=CB,∠OCD=∠FCB,然后得出结论.(3)设直线AB的表达式为y=kx+b,求得与抛物线的交点E的坐标,然后通过解三角函数求得结果.
【考点精析】关于本题考查的二次函数的图象和二次函数的性质,需要了解二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了了解青少年形体情况,现随机抽查了某市若干名初中学生坐姿、站姿、走姿的好坏情况.我们对测评数据作了适当处理(如果一个学生有一种以上不良姿势,以他最突出的一种作记载),并将统计结果绘制了如下两幅不完整的统计图,请你根据图中所给信息解答下列问题:
(1)请将两幅统计图补充完整;
(2)请问这次被抽查形体测评的学生一共是多少人?
(3)如果全市有5万名初中生,那么全市初中生中,坐姿和站姿不良的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点F在边AC上,并且CF=1,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一条直线上依次有A、B、C三个海岛,某海巡船从A岛出发沿直线匀速经B 岛驶向C岛,执行海巡任务,最终达到C岛.设该海巡船行驶x(h)后,与B港的距离为y(km),y与x的函数关系如图所示.
(1)填空:A、C两港口间的距离为km,a=
(2)求y与x的函数关系式,并请解释图中点P的坐标所表示的实际意义;
(3)在B岛有一不间断发射信号的信号发射台,发射的信号覆盖半径为15km,求该海巡船能接受到该信号的时间有多长?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).
(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是
(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.
(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,正方形纸片ABCD的边长为2,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P、EF、GH分别是折痕(如图2).设AE=x(0<x<2),给出下列判断:
①当x=1时,点P是正方形ABCD的中心;
②当x= 时,EF+GH>AC;
③当0<x<2时,六边形AEFCHG面积的最大值是3;
④当0<x<2时,六边形AEFCHG周长的值不变.
其中正确的选项是( )

A.①③
B.①②④
C.①③④
D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“知识改变命运,科技繁荣祖国”.某区中小学每年都要举办一届科技比赛.如图为某区某校2015年参加科技比赛(包括电子百拼、航模、机器人、建模四个类别)的参赛人数统计图:
(1)该校参加机器人、建模比赛的人数分别是人和人;
(2)该校参加科技比赛的总人数是人,电子百拼所在扇形的圆心角的度数是°,并把条形统计图补充完整.
(3)从全区中小学参加科技比赛选手中随机抽取85人,其中有34人获奖.2015年某区中小学参加科技比赛人数共有3625人,请你估算2015年参加科技比赛的获奖人数约是多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点F在ABCD的对角线AC上,过点F、B分别作AB、AC的平行线相交于点E,连接BF,∠ABF=∠FBC+∠FCB.
(1)求证:四边形ABEF是菱形;
(2)若BE=5,AD=8,sin∠CBE= ,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣ (x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y= (x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是(  )

A.
B.
C.
D.

查看答案和解析>>

同步练习册答案