【题目】如图,直角梯形ABCO的两边OA,OC在坐标轴的正半轴上,BC∥x轴,OA=OC=4,以直线x=1为对称轴的抛物线过A,B,C三点.
(1)求该抛物线的函数解析式;
(2)已知直线l的解析式为y=x+m,它与x轴交于点G,在梯形ABCO的一边上取点P.
①当m=0时,如图1,点P是抛物线对称轴与BC的交点,过点P作PH⊥直线l于点H,连结OP,试求△OPH的面积;
②当m=﹣3时,过点P分别作x轴、直线l的垂线,垂足为点E,F.是否存在这样的点P,使以P,E,F为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.
【答案】
(1)
解:由题意得:A(4,0),C(0,4),对称轴为x=1.
设抛物线的解析式为y=ax2+bx+c,则有:
,
解得 .
∴抛物线的函数解析式为:y=﹣ x2+x+4
(2)
解:①当m=0时,直线l:y=x.
∵抛物线对称轴为x=1,
∴CP=1.
如答图1,延长HP交y轴于点M,则△OMH、△CMP均为等腰直角三角形.
∴CM=CP=1,
∴OM=OC+CM=5.
S△OPH=S△OMH﹣S△OMP= ( OM)2﹣ OMCP= ×( ×5)2﹣ ×5×1= ﹣ = ,
∴S△OPH= .
②当m=﹣3时,直线l:y=x﹣3.
设直线l与x轴、y轴交于点G、点D,则G(3,0),D(0,﹣3).
假设存在满足条件的点P.
(a)当点P在OC边上时,如答图2﹣1所示,此时点E与点O重合.
设PE=a(0<a≤4),
则PD=3+a,PF= PD= (3+a).
过点F作FN⊥y轴于点N,则FN=PN= PF,∴EN=|PN﹣PE|=| PF﹣PE|.
在Rt△EFN中,由勾股定理得:EF= = .
若PE=PF,则:a= (3+a),解得a=3( +1)>4,故此种情形不存在;
若PF=EF,则:PF= ,整理得PE= PF,即a=3+a,不成立,故此种情形不存在;
若PE=EF,则:PE= ,整理得PF= PE,即 (3+a)= a,解得a=3.
∴P1(0,3).
(b)当点P在BC边上时,如答图2﹣2所示,此时PE=4.
若PE=PF,则点P为∠OGD的角平分线与BC的交点,有GE=GF,过点F分别作FH⊥PE于点H,FK⊥x轴于点K,
∵∠OGD=135°,
∴∠EPF=45°,即△PHF为等腰直角三角形,
设GE=GF=t,则GK=FK=EH= t,
∴PH=HF=EK=EG+GK=t+ t,
∴PE=PH+EH=t+ t+ t=4,
解得t=4 ﹣4,
则OE=3﹣t=7﹣4 ,
∴P2(7﹣4 ,4)
(c)∵A(4,0),B(2,4),
∴可求得直线AB解析式为:y=﹣2x+8;
联立y=﹣2x+8与y=x﹣3,解得x= ,y= .
设直线BA与直线l交于点K,则K( , ).
当点P在线段BK上时,如答图2﹣3所示.
设P(a,8﹣2a)(2≤a≤ ),则Q(a,a﹣3),
∴PE=8﹣2a,PQ=11﹣3a,
∴PF= (11﹣3a).
与a)同理,可求得:EF= .
若PE=PF,则8﹣2a= (11﹣3a),解得a=1﹣2 <0,故此种情形不存在;
若PF=EF,则PF= ,整理得PE= PF,即8﹣2a= (11﹣3a),解得a=3,符合条件,此时P3(3,2);
若PE=EF,则PE= ,整理得PF= PE,即 (11﹣3a)= (8﹣2a),解得a=5> ,故此种情形不存在.
(c)当点P在线段KA上时,如答图2﹣4所示.
∵PE、PF夹角为135°,
∴只可能是PE=PF成立.
∴点P在∠KGA的平分线上.
设此角平分线与y轴交于点M,过点M作MN⊥直线l于点N,则OM=MN,MD= MN,
由OD=OM+MD=3,可求得M(0,3﹣3 ).
又因为G(3,0),
可求得直线MG的解析式为:y=( ﹣1)x+3﹣3 .
联立直线MG:y=( ﹣1)x+3﹣3 与直线AB:y=﹣2x+8,
可求得:P4(1+2 ,6﹣4 ).
(e)当点P在OA边上时,此时PE=0,等腰三角形不存在.
综上所述,存在满足条件的点P,点P坐标为:(0,3)、(3,2)、(7﹣4 ,4)、(1+2 ,6﹣4 ).
【解析】(1)利用待定系数法求出抛物线的解析式;(2)①如答图1,作辅助线,利用关系式S△OPH=S△OMH﹣S△OMP求解;②本问涉及复杂的分类讨论,如答图2所示.由于点P可能在OC、BC、BK、AK、OA上,而等腰三角形本身又有三种情形,故讨论与计算的过程比较复杂,需要耐心细致、考虑全面.
【考点精析】掌握二次函数的性质是解答本题的根本,需要知道增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.
科目:初中数学 来源: 题型:
【题目】已知抛物线y=(x﹣m)2﹣(x﹣m),其中m是常数.
(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点;
(2)若该抛物线的对称轴为直线x= . ①求该抛物线的函数解析式;
②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某镇水库的可用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.
(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?
(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].
(1)如图①,对△ABC作变换[60°, ]得△AB′C′,则S△AB′C′:S△ABC=;直线BC与直线B′C′所夹的锐角为度;
(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB′C′,使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;
(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,求θ和n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在四边形ABCD中,∠DAB被对角线AC平分,且AC2=ABAD.我们称该四边形为“可分四边形”,∠DAB称为“可分角”.
(1)如图2,在四边形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求证:四边形ABCD为“可分四边形”;
(2)如图3,四边形ABCD为“可分四边形”,∠DAB为“可分角”,如果∠DCB=∠DAB,则求∠DAB的度数;
(3)现有四边形ABCD为“可分四边形”,∠DAB为“可分角”,且AC=4,则△DAB的最大面积等于 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=10cm,BC=6cm,AC=8cm,BD是∠ABC的角平分线。
(1)求△ABC的面积;
(2)求△ABC的角平分线BD的长;
(3)若点E是线段AB上的一个动点,从点B以每秒2cm的速度向A运动,几秒种后△EAD是直角三角形?(此小题可直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲、乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如图统计图.
根据统计图,解答下列问题:
(1)第三次成绩的优秀率是多少?并将条形统计图补充完整;
(2)已求得甲组成绩优秀人数的平均数 =7,方差 =1.5,请通过计算说明,哪一组成绩优秀的人数较稳定?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心, cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC在平面直角坐标系中的位置如图所示.
(1)作△ABC关于原点O成中心对称的△A1B1C1 .
(2)请写出点B关于y轴对称的点B2的坐标 . 若将点B2向下平移h单位,使其落在△A1B1C1内部(不包括边界),直接写出h的值(写出满足的一个即可).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com