精英家教网 > 初中数学 > 题目详情

【题目】如图,将半径为2,圆心角为的扇形绕点逆时针旋转,点的对应点分别为,连接,则图中阴影部分的面积是( )

A. B. C. D.

【答案】C

【解析】分析:连接OO′,BO,根据旋转的性质得到∠OAO=60°,推出OAO是等边三角形,得到∠AOO=60°,推出OOB是等边三角形,得到∠AOB=120°,得到∠OBB=OBB=30°,根据图形的面积公式即可得到结论.

详解:连接OO′,BO′.

∵将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转60°,

∴∠OAO=60°

∴△OAO是等边三角形,

∴∠AOO=60°

∵∠AOB=120°,

∴∠OOB=60°,

∴△OOB是等边三角形,

∴∠AOB=120°

∵∠AOB=120°

∴∠BOB=120°

∴∠OBB=OBB=30°

∴∠OBB=90°,

BB==2.

图中阴影部分的面积=SBOB-S扇形OOB=

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了保护视力,学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果如图所示(数据包括左端点不包括右端点,精确到0.1);活动后,再次检查这部分学生的视力,结果如表所示

分组

频数

4.0≤x<4.2

2

4.2≤x<4.4

3

4.4≤x<4.6

5

4.6≤x<4.8

8

4.8≤x<5.0

17

5.0≤x<5.2

5

(1)求活动所抽取的学生人数;

(2)若视力达到4.8及以上为达标,计算活动前该校学生的视力达标率;

(3)请选择适当的统计量,从两个不同的角度评价视力保健活动的效果.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD边长为3,点EAB边上且BE=1,点PQ分别是边BCCD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是(  )

A. 3 B. 5 C. 4 D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法:①若ab互为相反数,则=-1;②若ab0ab0,则|a2b|=-a2b;③若多项式ax3bx1的值为5,则多项式-ax3bx1的值为-3;④若甲班有50名学生,平均分是a分,乙班有40名学生,平均分是b分,则两班的平均分为.其中正确的为____(填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2+(m﹣3)x﹣m(2m﹣3)=0

(1)证明:无论m为何值方程都有两个实数根;

(2)是否存在正数m,使方程的两个实数根的平方和等于26?若存在,求出满足条件的正数m的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在我国南宋数学家杨辉(约13世纪)所著的《详解九章算术》(1261年)一书中,用下图的三角形解释二项和的乘方规律.杨辉在注释中提到,在他之前北宋数学家贾宪(1050年左右)也用过上述方法,因此我们称这个三角形为杨辉三角贾宪三角.杨辉三角两腰上的数都是,其余每一个数为它上方(左右)两数的和.事实上,这个三角形给出了的展开式(按的次数由大到小的顺序)的系数规律.例如,此三角形中第三行的个数,恰好对应着展开式中的各项系数,第四行的个数,恰好对应着展开式中的各项系数,等等.请依据上面介绍的数学知识,解决下列问题:

1)写出的展开式;

2)利用整式的乘法验证你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).

(1)直接用含t的代数式分别表示:QB=   ,PD=   

(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;

(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某厂制作甲、乙两种环保包装盒,已知同样用6m材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制成一个乙盒需要多用20%的材料.

(1)求制作每个甲盒、乙盒各用多少米材料?

(2)如果制作甲、乙两种包装盒共3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需要材料的总长度l(m)与甲盒数量n(个)之间的函数关系式,并求出最少需要多少米材料?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】蜗牛从某点O开始沿东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数.爬行的各段路程依次为(单位:厘米):.问:

1)蜗牛最后是否回到出发点O

2)蜗牛离开出发点O最远是多少厘米?

3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则蜗牛可得到多少粒芝麻?

查看答案和解析>>

同步练习册答案