精英家教网 > 初中数学 > 题目详情
11.已知,如图,在四边形ABCD中,AB∥CD,延长BC至点E,连接AE交CD于点F,使∠BAC=∠DAE,∠ACB=∠CFE
(1)求证:∠BAF=∠CAD;
(2)求证:AD∥BE;
(3)若BF平分∠ABC,请写出∠AFB与∠CAF的数量关系2∠AFB+∠CAF=180°..(不需证明)

分析 (1)根据∠BAC=∠DAE,运用等式性质即可得出∠BAC+∠CAF=∠DAE+∠CAF,进而得到∠BAF=∠CAD;
(2)根据∠BAC=∠DAF,∠ACB=∠CFE=∠AFD,可得∠B=∠D,最后根据∠B+∠BCD=180°,可得∠D+∠BCD=180°,进而判定AD∥BE;
(3)根据AD∥BE,可得∠E=∠1=∠2,再根据BF平分∠ABC,可得∠3=∠4,根据∠AFB是△BEF的外角,得出∠AFB=∠4+∠E=∠4+∠1,即∠AFB=3+∠2,最后根据AD∥BC,得到∠ABC+∠BAD=180°,进而得到2∠AFB+∠CAF=180°.

解答 解:(1)∵∠BAC=∠DAE,
∴∠BAC+∠CAF=∠DAE+∠CAF,
∴∠BAF=∠CAD;

(2)∵∠BAC=∠DAF,∠ACB=∠CFE=∠AFD,
∴∠B=∠D,
∵AB∥CD,
∴∠B+∠BCD=180°,
∴∠D+∠BCD=180°,
∴AD∥BE;

(3)如图2,∵AD∥BE,
∴∠E=∠1=∠2,
∵BF平分∠ABC,
∴∠3=∠4,
∵∠AFB是△BEF的外角,
∴∠AFB=∠4+∠E=∠4+∠1,
∴∠AFB=3+∠2,
又∵AD∥BC,
∴∠ABC+∠BAD=180°,
∴∠3+∠4+∠1+∠CAF+∠2=180°,
即2∠AFB+∠CAF=180°.
故答案为:2∠AFB+∠CAF=180°.

点评 本题主要考查了平行线的性质与判定,三角形外角性质,角平分线的定义以及三角形内角和定理的综合应用,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.如图1,一次函数y1=kx+b(k,b为常数,k≠0)的图象与反比例函数y2=$\frac{m}{x}$(m为常数,m≠0)的图象交于点M(1,4)和点N(4,n).
(1)填空:①反比例函数的解析式是y2=$\frac{4}{x}$;
②根据图象写出y1<y2时自变量x的取值范围是0<x<1或x>4;
(2)若将直线MN向下平移a(a>0)个单位长度后与反比例函数的图象有且只有一个公共点,求a的值;
(3)如图2,函数y2=$\frac{m}{x}$的图象(x>0)上有一个动点C,若将直线MN绕点C旋转得到直线PQ,PQ交x轴于点A,交y轴于点B,若BC=2CA,求OA•OB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.下列二次根式中是最简二次根式的是(  )
A.$\sqrt{4}$B.$\sqrt{8}$C.$\sqrt{10}$D.$\sqrt{12}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.下列命题错误的是(  )
A.平行四边形的对角线互相平分
B.矩形的对角线相等
C.对角线互相垂直平分的四边形是菱形
D.对角线相等的四边形是矩形

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.下列命题是假命题的有(  )
①邻补角相等;②对顶角相等;③同位角相等;④内错角相等.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.规定a*b=2a×2b
(1)求2*3;
(2)若2*(x+1)=16,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图所示的几何体的俯视图是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,点A、D、C、E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC=6,则CD的长为2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,在四边形ABCD中,AB∥CD,∠D=90°,E为AD上一点,分别以EB,EC为折痕将这两个角(∠A,∠D)向内折起,点A,D恰好落在BC边的F处,若AB=1,DC=4,则△EBC的面积为5.

查看答案和解析>>

同步练习册答案