已知,如图,AC为平行四边形ABCD的对角线,点E是边AD上一点,
![]()
(1)若∠CAD=∠EBC,AC=BE,AB=6,求CE的长。
(2)若AE+AB=BC,求证:∠BEC=∠ABE+
∠BAD.
(1)6;(2)证明见解析.
【解析】
试题分析:(1)由四边形ABCD是平行四边形知∠CAD=∠BCA,从而∠BCA=∠EBC,易证△BCA≌△CBE,因此CE=AB=6;
(2)过A作AA′∥CE交BC于A′,交BE于点F,可知四边形AA′CE为平行四边形,所以AE=A′C,∠CEB=∠EFA,∠AA′B=∠EAA′;又AE+AB=BC,∠BAA′=∠B A′A,易证∠BEC=∠ABE+
∠BAD.
试题解析:∵四边形ABCD是平行四边形,
∴AD∥BC
∴∠CAD=∠BCA,
∴∠BCA=∠EBC
又:AC=BE,BC=CB
∴△BCA≌△CBE
∴CE=AB=6.
(2)过A作AA′∥CE交BC于A′,交BE于点F,
![]()
∴四边形AA′CE是平行四边形
∴∠CEB=∠EFA,∠AA′B=∠E AA′,AE= A′C
又:AE+AB=BC,
∴AB=BA′
∴∠BAA′=∠B A′A=∠E AA′=![]()
又:∠EFA=∠ABE+∠BAF
∴∠BEC=∠ABE+
∠BAD.
考点: 1.平行四边形的判定与性质;2.全等三角形的判定与性质;3.等腰三角形的性质.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
如图是某区“平改坡”工程中一种坡屋顶的设计图.已知原平屋顶的宽度AB为8米, 两条相等的斜面钢条AC、BC夹角为110°,过点C作CD⊥AB于D.
1.求坡屋顶高度CD的长度;
2.求斜面钢条AC的长度.(长度精确到0.1米)
![]()
查看答案和解析>>
科目:初中数学 来源:2012届浙江衢州地区中考试第二次模拟考试数学试卷(带解析) 题型:解答题
如图是某区“平改坡”工程中一种坡屋顶的设计图.已知原平屋顶的宽度AB为8米, 两条相等的斜面钢条AC、BC夹角为110°,过点C作CD⊥AB于D.
【小题1】求坡屋顶高度CD的长度;
【小题2】求斜面钢条AC的长度.(长度精确到0.1米)![]()
查看答案和解析>>
科目:初中数学 来源:2011-2012学年江苏江阴南菁中学九年级中考适应性训练数学试卷(解析版) 题型:解答题
在一次数学活动课上,老师组织大家利用矩形进行图形变换的探究活动.
1.第一小组同学将矩形纸片ABCD按如下顺序进行操作:对折、展平,得折痕EF(如图1);再沿GC折叠,使点B落在EF上的点B'处(如图2),这样能得到∠B'GC的大小,你知道∠B'GC的大小是多少吗?请写出求解过程.
![]()
2.第二小组的同学,在一个矩形纸片上按照图3的方式剪下△ABC,其中BA=BC,将△ABC沿着直线AC的方向依次进行平移变换,每次均移动AC的长度,得到了△CDE、△EFG和△GHI,如图4.已知AH=AI,AC长为a,现以AD、AF和AH为三边构成一个新三角形,已知这个新三角形面积小于15,请你帮助该小组求出a可能的最大整数值.
![]()
3.探究活动结束后,老师给大家留下了一道探究题:如图5,已知AA'=BB'=CC'=2,∠AOB'=∠BOC'=∠COA'=60°,请利用图形变换探究S△AOB'+S△BOC'+S△COA'与的大小关系.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com