精英家教网 > 初中数学 > 题目详情
(2012•衢州二模)如图是某区“平改坡”工程中一种坡屋顶的设计图.已知原平屋顶的宽度AB为8米,两条相等的斜面钢条AC、BC夹角为110°,过点C作CD⊥AB于D.
(1)求坡屋顶高度CD的长度;
(2)求斜面钢条AC的长度.(长度精确到0.1米)
分析:(1)利用等腰三角形的性质求得AD的长,然后在直角三角形ADC中求得CD的长即可;
(2)利用AD的长和∠ACD的度数即可利用解直角三角形的知识求得AC的长度.
解答:解:(1)∵宽度AB为8米,CD⊥AB于D.
∴AD=
1
2
AB=4米,
∵AC、BC夹角为110°,
∴∠ACD=55°,
AD
CD
=tan∠ACD
∴CD=AD÷tan55°=4÷1.43≈2.8米;

(2)在直角三角形ADC中,
AD
AC
=sin∠ACD,
∴AC=
AD
sin55°
=4÷0.82≈4.9米.
点评:本题考查了解直角三角形的应用,从实际问题中整理出直角三角形并利用解直角三角形的知识求解是解决本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•衢州二模)计算:
8
+2(π-2012)0-4sin45°+(-1)3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•衢州二模)某中学九年级甲、乙两班同学商定举行一次远足活动,A、B两地相离10千米,甲班从A地出发匀速步行到B地,乙班从B地出发匀速步行到A地,两班同学各自到达目的地后都就地活动.两班同时出发,相向而行.设步行时间为x小时,甲、乙两班离A地的距离分别为y1千米、y2千米,y1、y2与x的函数关系图象如图所示,根据图象解答下列问题:
(1)分别求出y1、y2与x的函数关系式;
(2)求甲、乙两班学生出发后,几小时相遇?
(3)求甲班同学去远足的过程中,步行多少时间后两班同学之距为9千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•衢州二模)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE=
14
BC=1.
(1)求证:CE=CF;
(2)若G在AD上,连接GC,且∠GCE=45°,求∠GCF的度数;
(3)在(2)的条件下,求GC的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•衢州二模)已知:抛物线y1=x2以点C为顶点且过点B,抛物线y2=a2x2+b2x+c2以点B为顶点且过点C,分别过点B、C作x轴的平行线,交抛物线y1=x2y2=a2x2+b2x+c2于点A、D,且AB=AC.
(1)如图1,①求证:△ABC为正三角形;②求点A的坐标;
(2)①如图2,若将抛物线“y1=x2”改为“y1=x2+1”,其他条件不变,求CD的长;
②如图3,若将抛物线“y1=x2”改为“y1=3x2+b1x+c1”,其他条件不变,求a2的值;
(3)若将抛物线“y1=x2”改为抛物线“y1=a1x2+b1x+c1”,其他条件不变,直接写出b1关于b2的关系式.

查看答案和解析>>

同步练习册答案