精英家教网 > 初中数学 > 题目详情
(2012•衢州二模)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE=
14
BC=1.
(1)求证:CE=CF;
(2)若G在AD上,连接GC,且∠GCE=45°,求∠GCF的度数;
(3)在(2)的条件下,求GC的长度.
分析:(1)根据正方形性质得出BC=CD,∠BCD=∠B=∠ADC=∠CDF=90°,根据SAS证△EBC≌△FDC即可;
(2)求出∠BCE=∠DCF,求出∠BCE+∠DCG=45°,代入求出即可;
(3)连接EG,根据SAS证△ECG≌△FCG,推出EG=GF,设AG=x,求出EG=GF=5-x,在△AEG中根据勾股定理得出方程,求出AG,求出DG,根据勾股定理求出即可.
解答:(1)证明:∵四边形ABCD是正方形,
∴BC=CD,∠BCD=∠B=∠ADC=∠CDF=90°,
在△EBC和△FDC中
BE=DF
∠B=∠CDF
BC=CD

∴△EBC≌△FDC(SAS),
∴CE=CF.

(2)解:∵△EBC≌△FDC,
∴∠BCE=∠DCF,
∵∠BCD=90°,∠GCE=45°,
∴∠BCE+∠GCD=90°-45°=45°,
∴∠GCD+∠DCF=45°,
∴∠GCF=45°.

(3)解:连接EG,
∠ECG=∠GCF=45°,
在△ECG和△FCG中
EC=CF
∠ECG=∠FCG
CG=CG

∴△ECG≌△FCG,
∴EG=GF,
∵DF=BE=
1
4
BC=1,
∴BC=CD=AD=AB=4,
设AG=x,则DG=4-x,GF=4-x+1=5-x=EG,AE=4-1=3,
在Rt△AEG中,由勾股定理得:32+x2=(5-x)2
解得:x=1.6,
DG=4-1.6=2.4,
在Rt△GCD中,由勾股定理得:GC=
42+2.42
=
4
34
5
点评:本题考查了全等三角形的性质和判定,正方形的性质,勾股定理等知识点,用了方程思想,主要考查学生综合运用性质进行推理和计算的能力,题目比较好,有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•衢州二模)计算:
8
+2(π-2012)0-4sin45°+(-1)3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•衢州二模)如图是某区“平改坡”工程中一种坡屋顶的设计图.已知原平屋顶的宽度AB为8米,两条相等的斜面钢条AC、BC夹角为110°,过点C作CD⊥AB于D.
(1)求坡屋顶高度CD的长度;
(2)求斜面钢条AC的长度.(长度精确到0.1米)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•衢州二模)某中学九年级甲、乙两班同学商定举行一次远足活动,A、B两地相离10千米,甲班从A地出发匀速步行到B地,乙班从B地出发匀速步行到A地,两班同学各自到达目的地后都就地活动.两班同时出发,相向而行.设步行时间为x小时,甲、乙两班离A地的距离分别为y1千米、y2千米,y1、y2与x的函数关系图象如图所示,根据图象解答下列问题:
(1)分别求出y1、y2与x的函数关系式;
(2)求甲、乙两班学生出发后,几小时相遇?
(3)求甲班同学去远足的过程中,步行多少时间后两班同学之距为9千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•衢州二模)已知:抛物线y1=x2以点C为顶点且过点B,抛物线y2=a2x2+b2x+c2以点B为顶点且过点C,分别过点B、C作x轴的平行线,交抛物线y1=x2y2=a2x2+b2x+c2于点A、D,且AB=AC.
(1)如图1,①求证:△ABC为正三角形;②求点A的坐标;
(2)①如图2,若将抛物线“y1=x2”改为“y1=x2+1”,其他条件不变,求CD的长;
②如图3,若将抛物线“y1=x2”改为“y1=3x2+b1x+c1”,其他条件不变,求a2的值;
(3)若将抛物线“y1=x2”改为抛物线“y1=a1x2+b1x+c1”,其他条件不变,直接写出b1关于b2的关系式.

查看答案和解析>>

同步练习册答案