精英家教网 > 初中数学 > 题目详情

【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0),下列结论:①ab<0,②b2>4,③0<a+b+c<2,④0<b<1,⑤当x﹣1时,y0.其中正确结论是___________.

【答案】①③④

【解析】由抛物线的对称轴在y轴右侧,可以判定a、b异号,由此确定①正确;由抛物线与x轴有两个交点得到b2-4ac>0,又抛物线过点(0,1),得出c=1,由此判定②错误;由抛物线过点(-1,0),得出a-b+c=0,即a=b-1,由a<0得出b<1;由a<0,及ab<0,得出b>0,由此判定④正确;由a-b+c=0,及b>0得出a+b+c=2b>0;由b<1,c=1,a<0,得出a+b+c<a+1+1<2,由此判定③正确;由图象可知,当自变量x的取值范围在一元二次方程ax2+bx+c=0的两个根之间时,函数值y>0,由此判定⑤错误.

∵二次函数y=ax2+bx+c(a≠0)过点(0,1)和(-1,0), ∴c=1,a-b+c=0.

①∵抛物线的对称轴在y轴右侧,∴x=->0, ∴ab异号,∴ab<0,正确;

②∵抛物线与x轴有两个不同的交点,∴b2-4ac>0, ∵c=1,∴b2-4a>0,b2>4a,错误

④∵抛物线开口向下,∴a<0,∵ab<0,∴b>0.∵a-b+c=0,c=1,∴a=b-1,

∵a<0,∴b-1<0,b<1,∴0<b<1,正确;

③∵a-b+c=0,∴a+c=b,∴a+b+c=2b>0.∵b<1,c=1,a<0,

∴a+b+c=a+b+1<a+1+1=a+2<0+2=2, ∴0<a+b+c<2,正确;

⑤抛物线y=ax2+bx+cx轴的一个交点为(-1,0),设另一个交点为(x0,0),则x0>0,

由图可知,当x0>x>-1时,y>0,错误; 综上所述,正确的结论有①③④.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知点P是正方形ABCD内部一点,且△PAB是正三角形,则∠CPD_____度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABC0位于直角坐标平面,O为原点,A、C分别在坐标轴上,B的坐标为(8,6),线段BC上有一动点P,已知点D在第一象限.

(1)D是直线y=2x+6上一点,若△APD是等腰直角三角形,求点D的坐标;

(2)D是直线y=2x﹣6上一点,若△APD是等腰直角三角形.求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB5cmBC2cmMN两点分别从AB两点以2cm/s1cm/s的速度在矩形ABCD边上沿逆时针方向运动,其中有一点运动到点D即停止,当运动时间为_____秒时,MBN为等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.

1)如图1,在梯形ABCD中,AD∥BC∠BAD=120°∠C=75°BD平分∠ABC.求证:BD是梯形ABCD的和谐线;

2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点ABC均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以ABCD为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;

3)四边形ABCD中,AB=AD=BC∠BAD=90°AC是四边形ABCD的和谐线,求∠BCD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,°,垂直平分垂直平分,则的度数为(  )

A.124°B.112°C.108°D.118°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:已知△ABC中,CA=CB,CD⊥AB于D点,点M为线段AC上一动点,线段MN交DC于点N,且∠BAC=2∠CMN,过点C作CE⊥MN交MN延长线于点E,交线段AB于点F,探索的值.

(1)若∠ACB=90°,点M与点A重合(如图1)时:①线段CEEF之间的数量关系是 ;②=

(2)在(1)的条件下,若点M不与点A重合(如图2),请猜想写出的值,并证明你的猜想

(3)若∠ACB≠90°,∠CAB=,其他条件不变,请直接写出的值(用含有的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,我国两艘海监船 AB 在南海海域巡逻,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船 C,此时,B 船在A 船的正南方向 15 海里处,A 船测得渔船 C 在其南偏东 45°方向,B 船测得渔船 C 在其南偏东 53°方向,已知 A 船的航速为 30 海里/小时,B 船的航速为 25 海里/小时,问 C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈cos53°≈tan53°≈ 4 1.41 )

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)中的x与y的部分对应值如下表所示,则下列结论中,正确的个数有( )

x

-7

-6

-5

-4

-3

-2

y

-27

-13

-3

3

5

3

①当x<-4时,y<3②当x=1时,y的值为-13;③-2是方程ax2+(b-2)x+c-7=0的一个根;④方程ax2+bx+c=6有两个不相等的实数根.

A. 4个 B. 3个 C. 2个 D. 1个

查看答案和解析>>

同步练习册答案