精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数y=kx+1(k≠0)与反比例函数(m≠0)的图象有公共点A(1,2).直线lx轴于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.

(1)求一次函数与反比例函数的解析式;

(2)求ABC的面积?

【答案】解:(1)将A(1,2)代入一次函数解析式得:k+1=2,即k=1,一次函数解析式为y=x+1。

将A(1,2)代入反比例解析式得:m=2,

反比例解析式为

(2)设一次函数与x轴交于D点,过点A作AE垂直于x轴于点E,

在y=x+1中,令y=0,求出x=﹣1,即OD=1

A(1,2)AE=2,OE=1

N(3,0),到B横坐标为3

将x=3代入一次函数得:y=4,

将x=3代入反比例解析式得:

B(3,4),即ON=3,BN=4,C(3,),即CN=

解析(1)将A坐标代入一次函数解析式中求出k的值,确定出一次函数解析式,将A坐标代入反比例函数解析式中求出m的值,即可确定出反比例解析式;

(2)设一次函数与x轴交点为D点,过A作AE垂直于x轴,由ABC面积=BDN面积-ADE面积-梯形AECN面积,求出即可。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠BCA=90°,ACBC,点DBC的中点,点F在线段AD上,DFCDBFCAE点,过点ADA的垂线交CF的延长线于点G,下列结论:CF2EFBF;②AG=2DC;③AEEF;④AFECEFEB.其中正确的结论有(  )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCDAC平分∠BADADC=ACB=90EAB的中点,ACDE交于点F

(1)求证: =AB·AD

(2)求证:CE//AD

(3)AD=6, AB=8.求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形 ABCD 的边长为 10EBC 边上运动,取 DE 的中点 GEG 绕点 E 顺时针旋转90°得 EF,问 CE 长为多少时,ACF 三点在一条直线上( )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线yax2+bx+c经过A(﹣6,0)、B(2,0)、C(0,6)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与AD重合),过点Py轴的垂线,垂足为点E,连接AE

(1)求抛物线的函数解析式,并写出顶点D的坐标;

(2)如果点P的坐标为(xy),PAE的面积为S,求Sx之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;

(3)过点P(﹣3,m)作x轴的垂线,垂足为点F,连接EF,把PEF沿直线EF折叠,点P的对应点为点P,求出P的坐标.(直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在半径为2的⊙O中,弦AB=2,O上存在点C,若AC=2,则∠BAC的度数为___.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,AB=4cm,点EAC边上一点,且AE=3cm,动点P从点A出发,以1cm/s的速度沿线段AB向终点B运动,运动时间为x s.作∠EPF=90°,与边BC相交于点F.设BF长为ycm.

(1)当x s时,EPPF

(2)求在点P运动过程中,yx之间的函数关系式;

(3)点F运动路程的长是 cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知x1,x2是关于x的一元二次方程4kx2﹣4kx+k+1=0的两个实数根.

(1)是否存在实数k,使(2x1﹣x2)(x1﹣2x2)=﹣成立?若存在,求出k的值;若不存在,说明理由;

(2)求使﹣2的值为整数的实数k的整数值;

(3)若k=﹣2,λ=,试求λ的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有长为27m的篱笆,一面利用墙(墙的最大可用长度 a12m),围成中间隔有一道篱笆的矩形花圃,设花圃的宽为AB=xm,面积为Sm2

(1) S x 的函数关系式;

(2)求矩形花圃的最大面积.

查看答案和解析>>

同步练习册答案