精英家教网 > 初中数学 > 题目详情

【题目】如图,OAOBOC都是⊙O的半径,若∠AOB是锐角,且∠AOB2BOC,则下列结论正确的是(  )个.

AB2BC;②2;③∠ACB2CAB;④∠ACB=∠BOC

A.1B.2C.3D.4

【答案】C

【解析】

首先取的中点D,连接ADBD,由∠AOB=2BOC,易得2AD=BD=BC,继而证得AB2BC,又由圆周角定理,可得∠AOB=4CAB,∠ACB=BOC=2CAB

解:取的中点D,连接ADBD

∵∠AOB2BOC

2,故②正确,

ADBDBC

ABAD+BD

AB2BC.故①错误,

∵∠AOB2BOC,∠BOC2CAB

∴∠AOB4CAB

∵∠AOB2ACB

∴∠ACB=∠BOC2CAB,故③④正确.

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:

(1)甲登山上升的速度是每分钟   米,乙在A地时距地面的高度b   米;

(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;

(3)登山多长时间时,甲、乙两人距地面的高度差为70米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某种流感病毒,有一人患了这种流感,在每轮传染中一人将平均传给.

1)求第一轮后患病的人数;(用含的代数式表示)

2)在进入第二轮传染之前,有两位患者被及时隔离并治愈,问第二轮传染后总共是否会有21人患病的情况发生,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,RtABC中,∠ACB90°,以AC为直径的半圆OABFEBC的中点.

求证:直线EF是半圆O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在阳光下,一名同学测得一根长为1米的垂直地面的竹竿的影长为0.6米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得落在教学楼第一级台阶上的影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.42米,则树高为_____米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点EAB边上,沿CE折叠矩形ABCD,使点B落在AD边上的点F处,若AB3BC4,则tanAFE__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,∠ACB90°,⊙O是△ABC的外接圆,点D上一点,过点C作⊙O的切线PC,直线PCBA的延长线于点P,交BD的延长线于点E

1)求证:∠PCA=∠PBC

2)若PC8PA4,∠ECD=∠PCA,以点C为圆心,半径为5作⊙C,试判断⊙C与直线BD的位置关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线与直线相交于两点,且抛物线经过点

求抛物线的解析式;

P是抛物线上的一个动点不与点A、点B重合,过点P作直线轴于点D,交直线AB于点E

时,求P点坐标;

是否存在点P使为等腰三角形?若存在请直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中.ABACADBCD,作DEACEFAB中点,连EFAD于点G

(1)求证:AD2ABAE

(2)AB3AE2,求的值.

查看答案和解析>>

同步练习册答案