精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC 是等边三角形,D AC 上一点连接 BD,旋转△BCD,使点 B 落在 BC上方的点 E 处,点 C 落在 BC 上的点 F 处,点 D 落在点 C 处,连接 AE

求证:四边形 ABFE 是平行四边形.

【答案】详见解析.

【解析】

由题意ABC、AED、DCF是等边三角形,可以推知同位角CFD=ABC,内错角CFD=AED.所以利用平行的线的判定定理可以证得四边形ABFE的对边相互平行.

证明:∵△ABC 是等边三角形,

ACBCABACB60°

AC 绕点 E 旋转

DFDCDEDA

∴△DFC 是等边三角形,

DFCDCFDCFEFC60°,

EFACBC

∴△ABC、△AED、△DCF 均为等边三角形,

∴∠CFDABCDEA60°,

ABEFBFAE

四边形 ABFE 是平行四边形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角EAC为30°,测得建筑物CD的底部D点的俯角EAD为45°.

(1)求两建筑物底部之间水平距离BD的长度;

(2)求建筑物CD的高度(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一组数据abc的平均数为5,方差为4,那么数据a+2b+2c+2的平均数和方差分别是(  )

A.54B.45C.74D.73

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为(  )

A. (0,0) B. (1, C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】

1)如图1,在RtABC中,ABC=90°,以点B为中心,把ABC逆时针旋转90°,得到A1BC1;再以点C为中心,把ABC顺时针旋转90°,得到A2B1C,连接C1B1,则C1B1BC的位置关系为_______

2)如图2,当ABC是锐角三角形,ABC=αα≠60°)时,将ABC按照(1)中的方式旋转α,连接C1B1,探究C1B1BC的位置关系,写出你的探究结论,并加以证明;

3)如图3,在图2的基础上,连接B1B,若C1B1=BCC1BB1的面积为4,则B1BC的面积为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠ACB=90°,CD平分∠ACBAB于点D,按下列步骤作图:

步骤1:分别以点C和点D为圆心,大于的长为半径作弧,两弧相交于M,N两点;

步骤2:作直线MN,分别交AC,BC于点E,F;

步骤3:连接DE,DF.

AC=4,BC=2,则线段DE的长为  

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD 中,点EAD上,ECABEBDC,若ABE面积为5,ECD的面积为1,则BCE的面积是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2015年底拥有家庭轿车64辆,2017年底家庭轿车的拥有量达到100辆.

(1)若该小区2015年底到2018年底家庭轿车拥有量的年平均增长率都相同,求该小区到2018年底家庭轿车将达到多少辆?

(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=6,BC=4,若ACAD,且∠ACD=60°,则对角线BD的长的最大值为_____

查看答案和解析>>

同步练习册答案