分析 (1)根据图象可知货车5小时行驶300千米,由此求出货车的速度为60千米/时,再根据图象得出货车出发后4.5小时轿车到达乙地,由此求出轿车到达乙地时,货车行驶的路程为270千米,而甲、乙两地相距300千米,则此时货车距乙地的路程为:300-270=30千米;
(2)设CD段的函数解析式为y=kx+b,将C(2.5,80),D(4.5,300)两点的坐标代入,运用待定系数法即可求解;
(3)设轿车从乙地出发x小时后再与货车相遇,根据轿车行驶的路程+货车行驶的路程=30千米,列出方程,解方程即可.
解答 解:(1)根据图象信息:货车的速度V货=300÷5=60(千米/时).
∵轿车到达乙地的时间为货车出发后4.5小时,
∴轿车到达乙地时,货车行驶的路程为:4.5×60=270(千米),
此时,货车距乙地的路程为:300-270=30(千米).
答:轿车到达乙地后,货车距乙地30千米;
(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).
∵C(2.5,80),D(4.5,300)在其图象上,
∴$\left\{\begin{array}{l}{2.5k+b=80}\\{4.5k+b=300}\end{array}\right.$,解得$\left\{\begin{array}{l}{k=110}\\{b=-195}\end{array}\right.$,
∴CD段函数解析式:y=110x-195(2.5≤x≤4.5);
(3)设轿车从乙地出发x小时后再与货车相遇,
∵V货车=60千米/时,V轿车=110(千米/时),
∴110x+60x=30,
解得x=$\frac{13}{17}$(小时).
答:轿车从乙地出发约$\frac{13}{17}$小时后再与货车相遇.
点评 本题考查了一次函数的应用,对一次函数图象的意义的理解,待定系数法求一次函数的解析式的运用,行程问题中路程=速度×时间的运用,本题有一定难度,其中求出货车与轿车的速度是解题的关键.
科目:初中数学 来源: 题型:选择题
| A. | $\frac{5}{2}$ | B. | -$\frac{5}{2}$ | C. | $\frac{2}{5}$ | D. | -$\frac{2}{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| 地域 | 荔城 | 城厢 | 秀屿 | 涵江 | 仙游 | 湄洲 |
| 可吸入颗粒物(mg/m3) | 0.15 | 0.15 | 0.13 | 0.15 | 0.18 | 0.14 |
| A. | 0.15和0.14 | B. | 0.18和0.15 | C. | 0.18和0.14 | D. | 0.15和0.15 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com