精英家教网 > 初中数学 > 题目详情

【题目】如图,在等腰ABC中,∠A=80°,B和∠C的平分线相交于点O

(1)连接OA,求∠OAC的度数;

(2)求:∠BOC。

【答案】(1) 40°;(2) 130°

【解析】

试题(1)连接AO,利用等腰三角形的对称性即可求得∠OAC的度数;(2)利用三角形的内角和定理以及角平分线的定义求∠BOC与∠A的关系,再把∠A代入即可求∠BOC的度数.

试题解析:

(1)连接AO,

∵在等腰ABC中,∠B和∠C的平分线相交于点O,

∴等腰ABC关于线段AO所在的直线对称,

∵∠A=80°,

∴∠OAC=40°

(2)BO、CO分别平分∠ABC和∠ACB,

∴∠OBC= ABC,OCB=ACB,

∴∠BOC=180°-(OBC+OCB)

=180°-( ABC+ACB)

=180°- (ABC+ACB)

=180°- (180°-A)

=90°+A。

∴当∠A=80°时,

BOC=180° (B+C)=90°+A=130°。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】2018120日,山西迎来了复兴号列车,与和谐号相比,复兴号列车时速更快,安全性更好.已知太原南﹣北京西全程大约500千米,复兴号”G92次列车平均每小时比某列和谐号列车多行驶40千米,其行驶时间是该列和谐号列车行驶时间的(两列车中途停留时间均除外).经查询,复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐复兴号”G92次列车从太原南到北京西需要多长时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙两个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙两个小组各项得分如下表:

小组

研究报告

小组展示

答辩

91

80

78

79

83

90

(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;

(2)如果研究报告、小组展示、答辩按照4:3:3计算成绩,哪个小组的成绩最高?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰ABC中,∠A=36°,ABC=ACB,1=2,3=4,BDCE交于点O,则图中等腰三角形有(  )

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:在△AFD和△CEB中,点A、E、F、C在同一直线上,AE=CF,B=D,ADBC.

(1)ADBC相等吗?请说明理由;

(2)BEDF平行吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,且抛物线经过A(﹣1,0),C(0,﹣5)两点,与x轴交于点B.

(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)设点P为抛物线上的一个动点,连接PB、PC,若△BPC是以BC为直角边的直角三角形,求此时点P的坐标;
(3)在抛物线上BC段有另一个动点Q,以点Q为圆心作⊙Q,使得⊙Q与直线BC相切,在运动的过程中是否存在一个最大⊙Q?若存在,请直接写出最大⊙Q的半径;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,二次函数y=﹣ x2+bx+c的图象经过B、C两点.

(1)求该二次函数的解析式;
(2)结合函数的图象探索:当y>0时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线经过A(﹣1,0),B(5,0),C(0,- )三点.

(1)求抛物线的解析式;
(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;
(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案