精英家教网 > 初中数学 > 题目详情
7.下列各数中最小的是(  )
A.23B.-32C.(-3)2D.(-2)3

分析 原式各项计算得到结果,即可作出判断.

解答 解:A、23=8;
B、-32=-9;
C、(-3)2=9;
D、(-2)3=-8,
最小的是-32
故选B

点评 此题考查了有理数的乘方,以及有理数的大小比较,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.计算:
(1)(-7)-(-10)+(-8)-(+2)
(2)($\frac{1}{4}$-$\frac{1}{2}$+$\frac{1}{6}$)×(-12)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,反比例函数$y=\frac{k}{x}$(k≠0,k为常数)的图象与一次函数y=ax+b(a≠0,a、b为常数)的图象相交于A(-4,1)、B(2,m)两点.
(1)求k、m的值;
(2)求△AOB的面积;
(3)根据图象直接写出使不等式ax+b>$\frac{k}{x}$成立的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,锐角△ABC中,BD⊥AC于点D,CE⊥AB于点E,BD,CE相交于点O,且OB=OC.
(1)请你说明△ABC是等腰三角形;
(2)判断点O是否在∠BAC的角平分线上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.
(1)出发2秒后,求△ABP的周长.
(2)当t为几秒时,BP平分∠ABC?
(3)问t为何值时,△BCP为等腰三角形?
(4)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知多项式(2ax2+3x-1)-(3x-2x2-3)的值与x无关,试求2a3-[a2-2(a+1)+a]-2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.格点三角形(顶点是网格线的交点的三角形)△ABC在平面直角坐标系中的位置如图所示.
(1)A点坐标为(-2,3);A点关于y轴轴对称的对称点A1坐标为(2,3).
(2)请作出△ABC关于y轴轴对称的△A1B1C1
(3)若P(a,b)在△ABC内,则点P在△A1B1C1内的对应点P1的坐标是(-a,b).(用含a,b的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.若|m-2|=2-m,|m|=3,则m=-3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.若[x]表示不超过x的最大整数(如[π]=3,[-2$\frac{2}{3}$]=-3等),则[$\frac{1}{2-\sqrt{1×2}}$]+[$\frac{1}{3-\sqrt{2×3}}$]+…[$\frac{1}{2015-\sqrt{2014×2015}}$]=2014.

查看答案和解析>>

同步练习册答案