精英家教网 > 初中数学 > 题目详情

已知抛物线y=x2+bx+c的顶点为P,与y轴交于点A,与直线OP交于点B.
(1)如图1,若点P的横坐标为1,点B的坐标为(3,6),试确定抛物线的解析式;
(2)在(1)的条件下,若点M是直线AB下方抛物线上的一点,且S△ABM=3,求点M的坐标;
(3)如图2,若点P在第一象限,且PA=PO,过点P作PD⊥x轴于点D.将抛物线y=x2+bx+c平移,平移后的抛物线经过点A、D,该抛物线与x轴的另一个交点为C,请探究四边形OABC的形状,并说明理由.

解:(1)依题意,
解得b=-2.
将b=-2及点B(3,6)的坐标代入抛物线解析式y=x2+bx+c得6=32-2×3+c.
解得 c=3.
所以抛物线的解析式为y=x2-2x+3.

(2)∵抛物线y=x2-2x+3与y轴交于点A,
∴A(0,3).
∵B(3,6),
可得直线AB的解析式为y=x+3.
设直线AB下方抛物线上的点M坐标为(x,x2-2x+3),过M点作y轴的平行线交直线AB于点N,则N(x,x+3).(如图1)


解得 x1=1,x2=2.
故点M的坐标为(1,2)或 (2,3).

(3)如图2,由 PA=PO,OA=c,可得
∵抛物线y=x2+bx+c的顶点坐标为

∴b2=2c.
∴抛物线,A(0,),P(),D(,0).
可得直线OP的解析式为
∵点B是抛物线与直线的图象的交点,

解得
可得点B的坐标为(-b,).
由平移后的抛物线经过点A,可设平移后的抛物线解析式为
将点D(,0)的坐标代入,得
则平移后的抛物线解析式为
令y=0,即
解得
依题意,点C的坐标为(-b,0).
则BC=
则BC=OA.
又∵BC∥OA,
∴四边形OABC是平行四边形.
∵∠AOC=90°,
∴四边形OABC是矩形.
分析:(1)首先求出b的值,然后把b=-2及点B(3,6)的坐标代入抛物线解析式y=x2+bx+c求出c的值,抛物线的解析式即可求出;
(2)首先求出A点的坐标,进而求出直线AB的解析式,设直线AB下方抛物线上的点M坐标为(x,x2-2x+3),过M点作y轴的平行线交直线AB于点N,则N(x,x+3),根据三角形面积为3,求出x的值,M点的坐标即可求出;
(3)由PA=PO,OA=c,可得,又知抛物线y=x2+bx+c的顶点坐标为 ,即可求出b和c的关系,进而得到A(0,),P(),D(,0),根据B点是直线与抛物线的交点,求出B点的坐标,由平移后的抛物线经过点A,可设平移后的抛物线解析式为,再求出b与m之间的关系,再求出C点的坐标,根据两对边平行且相等的四边形是平行四边形,结合∠AOC=90°即可证明四边形OABC是矩形.
点评:本题主要考查二次函数的综合题的知识,此题设计抛物线解析式得求法,抛物线顶点与对称轴的求法以及矩形的判定,特别是第三问设计到平移的知识,同学们作答时需认真,此题难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=x2-8x+c的顶点在x轴上,则c等于(  )
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=x2+(1-2a)x+a2(a≠0)与x轴交于两点A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范围,并证明A、B两点都在原点O的左侧;
(2)若抛物线与y轴交于点C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=-x2+bx+c与x轴负半轴交于点A,与y轴正半轴交于点B,且OA=OB.
精英家教网(1)求b+c的值;
(2)若点C在抛物线上,且四边形OABC是平行四边形,试求抛物线的解析式;
(3)在(2)的条件下,作∠OBC的角平分线,与抛物线交于点P,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•虹口区一模)如图,在平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过A(0,3),B(1,0)两点,顶点为M.
(1)求b、c的值;
(2)将△OAB绕点B顺时针旋转90°后,点A落到点C的位置,该抛物线沿y轴上下平移后经过点C,求平移后所得抛物线的表达式;
(3)设(2)中平移后所得的抛物线与y轴的交点为A1,顶点为M1,若点P在平移后的抛物线上,且满足△PMM1的面积是△PAA1面积的3倍,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黔南州)已知抛物线y=x2-x-1与x轴的交点为(m,0),则代数式m2-m+2011的值为(  )

查看答案和解析>>

同步练习册答案