精英家教网 > 初中数学 > 题目详情
如图所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度精英家教网移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.
(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8cm2
(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC的面积的一半?
分析:(1)设果P、Q同时出发,x秒钟后,AP=xcm,PC=(6-x)cm,CQ=2xcm,此时△PCQ的面积为:
1
2
×2x(6-x),令该式=8,由此等量关系列出方程求出符合题意的值;
(2)△ABC的面积的一半等于
1
2
×
1
2
×AC×BC=12cm2,令
1
2
×2x(6-x)=12,判断该方程是否有解,若有解则存在,否则不存在.
解答:解:(1)设xs后,可使△PCQ的面积为8cm2
由题意得,AP=xcm,PC=(6-x)cm,CQ=2xcm,
1
2
•(6-x)•2x=8

整理,得x2-6x+8=0,解得x1=2,x2=4.
所以P、Q同时出发,2s或4s后可使△PCQ的面积为8cm2

(2)由题意得:
S△ABC=
1
2
×AC•BC=
1
2
×6×8=24,
即:
1
2
×2x×(6-x)=
1
2
×24

x2-6x+12=0,
△=62-4×12=-12<0,该方程无实数解,
所以,不存在使得△PCQ的面积等于△ABC的面积的一半的时刻.
点评:本题主要考查一元二次方程的应用,关键在于找出等量关系列出方程求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于点F,求∠BFE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.
求证:(1)四边形AFCE是平行四边形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC于D、E,若∠DAE=50°,则∠BAC=
115
度,若△ADE的周长为19cm,则BC=
19
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,AB=AC,DE是边AB的垂直平分线,交AB于E,交AC于D,若△BCD的周长为18cm,△ABC的周长为30cm,那么BE的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P点在BC上从B点向C点运动(不包括点C),点P的运动速度为2cm∕s;Q点在AC上从C点向点A运动(不包括点A),运动速度为5cm∕s,若点P、Q分别从B、C同时运动,请解答下面的问题,并写出主要过程.
(1)经过多长时间后,P、Q两点的距离为5
2
cm?
(2)经过多长时间后,△PCQ面积为15cm2

查看答案和解析>>

同步练习册答案