精英家教网 > 初中数学 > 题目详情

【题目】如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣ x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为 m.
(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?
(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?

【答案】
(1)解:根据题意得B(0,4),C(3, ),

把B(0,4),C(3, )代入y=﹣ x2+bx+c得

解得

所以抛物线解析式为y=﹣ x2+2x+4,

则y=﹣ (x﹣6)2+10,

所以D(6,10),

所以拱顶D到地面OA的距离为10m;


(2)解:由题意得货运汽车最外侧与地面OA的交点为(2,0)或(10,0),

当x=2或x=10时,y= >6,

所以这辆货车能安全通过;


(3)解:令y=8,则﹣ (x﹣6)2+10=8,解得x1=6+2 ,x2=6﹣2

则x1﹣x2=4

所以两排灯的水平距离最小是4 m.


【解析】(1)先确定B点和C点坐标,然后利用待定系数法求出抛物线解析式,再利用配方法确定顶点D的坐标,从而得到点D到地面OA的距离;(2)由于抛物线的对称轴为直线x=6,而隧道内设双向行车道,车宽为4m,则货运汽车最外侧与地面OA的交点为(2,0)或(10,0),然后计算自变量为2或10的函数值,再把函数值与6进行大小比较即可判断;(3)抛物线开口向下,函数值越大,对称点之间的距离越小,于是计算函数值为8所对应的自变量的值即可得到两排灯的水平距离最小值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(12)如图1,已知Rt△ABC,AB=BC,AC=2,把一块含30°角的三角板DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为DF),CDEBDF上.

(1)求重叠部分△BCD的面积;

(2)如图2,将直角三角板DEFD点按顺时针方向旋转30,DEBC于点M,DFAB于点N.

求证:DM=DN;

在此条件下重叠部分的面积会发生变化吗?若发生变化请求出重叠部分的面积若不发生变化请说明理由;

(3)如图3,将直角三角板DEFD点按顺时针方向旋转α(0<α<90),DEBC于点M,DFAB于点N,DM=DN的结论仍成立吗?重叠部分的面积会变吗?(请直接写出结论不需要说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是半圆O的直径,AB=a,C是半圆上一点,弦AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,连接CD,DB,OD.
(1)求证:△CDF≌△BDE;
(2)当AD=时,四边形AODC是菱形;
(3)当AD=时,四边形AEDF是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某旅游商品经销店欲购进AB两种纪念品,若用380元购进A种纪念品7件,B种纪念品8件;也可以用380元购进A种纪念品10件,B种纪念品6件.

1)求AB两种纪念品的进价分别为多少?

2)若该商店每销售1A种纪念品可获利5元,每销售1B种纪念品可获利7元,该商店准备用不超过900元购进AB两种纪念品40件,且这两种纪念品全部售出时总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】本学期开学前夕,某文具店用4000元购进若干书包,很快售完,接着又用4500元购进第二批书包,已知第二批所购进书包的只数是第一批所购进书包的只数的1.5倍,且每只书包的进价比第一批的进价少5元,求第一批书包每只的进价是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.

(1)求抛物线的解析式及点C的坐标;
(2)求证:△ABC是直角三角形;
(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,C为线段AE上一动点(不与点AE重合),在AE同侧分别作正△ABC和正△CDEADBE交于点OADBC交于点PBECD交于点Q,连接PQ.以下五个结论:①AD=BE②PQ∥AE③AP=BQ④DE=DP⑤∠AOB=60°

恒成立的结论有 .(把你认为正确的序号都填上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠ACB=90°AC=BCADCEBECE,垂足分别为DE

1)证明:BCE≌△CAD

2)若AD=25cmBE=8cm,求DE的长.

查看答案和解析>>

同步练习册答案